About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 249208, 31 pages
http://dx.doi.org/10.1155/2014/249208
Research Article

A Hybrid Forecasting Model Based on Bivariate Division and a Backpropagation Artificial Neural Network Optimized by Chaos Particle Swarm Optimization for Day-Ahead Electricity Price

1Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China
2School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

Received 2 April 2014; Accepted 19 May 2014; Published 14 July 2014

Academic Editor: Fuding Xie

Copyright © 2014 Zhilong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Anbazhagan and N. Kumarappan, “Day-ahead deregulated electricity market price classification using neural network input featured by DCT,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 103–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Aggarwal, L. M. Saini, and A. Kumar, “Electricity price forecasting in deregulated markets: a review and evaluation,” International Journal of Electrical Power and Energy Systems, vol. 31, no. 1, pp. 13–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H.-T. Pao, “Forecasting electricity market pricing using artificial neural networks,” Energy Conversion and Management, vol. 48, no. 3, pp. 907–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. X. R. Li, C. W. Yu, S. Y. Ren, C. H. Chiu, and K. Meng, “Day-ahead electricity price forecasting based on panel cointegration and particle filter,” Electric Power Systems Research, vol. 95, pp. 66–76, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang, Z. Tan, and S. Yang, “Day-ahead electricity price forecasting by a new hybrid method,” Computers and Industrial Engineering, vol. 63, no. 3, pp. 695–701, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Tan, J. Zhang, J. Wang, and J. Xu, “Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models,” Applied Energy, vol. 87, no. 11, pp. 3606–3610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Amjady and F. Keynia, “Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique,” Energy Conversion and Management, vol. 50, no. 12, pp. 2976–2982, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Vahidinasab, S. Jadid, and A. Kazemi, “Day-ahead price forecasting in restructured power systems using artificial neural networks,” Electric Power Systems Research, vol. 78, no. 8, pp. 1332–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. I. Arciniegas and I. E. Arciniegas Rueda, “Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system,” Utilities Policy, vol. 16, no. 1, pp. 39–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Chakravarty and P. K. Dash, “Dynamic filter weights neural network model integrated with differential evolution for day-ahead price forecasting in energy market,” Expert Systems with Applications, vol. 38, no. 9, pp. 10974–10982, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Bordignon, D. W. Bunn, F. Lisi, and F. Nan, “Combining day-ahead forecasts for British electricity prices,” Energy Economics, vol. 35, pp. 88–103, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Shayeghi and A. Ghasemi, “Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme,” Energy Conversion and Management, vol. 74, pp. 482–491, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Anbazhagan and N. Kumarappan, “Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT,” Energy Conversion and Management, vol. 78, pp. 711–719, 2014.
  14. D. Niu, D. Liu, and D. D. Wu, “A soft computing system for day-ahead electricity price forecasting,” Applied Soft Computing Journal, vol. 10, no. 3, pp. 868–875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W.-M. Lin, H.-J. Gow, and M.-T. Tsai, “An enhanced radial basis function network for short-term electricity price forecasting,” Applied Energy, vol. 87, no. 10, pp. 3226–3234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Yan and N. A. Chowdhury, “Mid-term electricity market clearing price forecasting: a hybrid LSSVM and ARMAX approach,” International Journal of Electrical Power and Energy Systems, vol. 53, no. 1, pp. 20–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Yan and N. A. Chowdhury, “Mid-term electricity market clearing price forecasting: a multiple SVM approach,” International Journal of Electrical Power and Energy Systems, vol. 58, pp. 206–214, 2014.
  18. W.-M. Lin, H.-J. Gow, and M.-T. Tsai, “Electricity price forecasting using enhanced probability neural network,” Energy Conversion and Management, vol. 51, no. 12, pp. 2707–2714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Singhal and K. S. Swarup, “Electricity price forecasting using artificial neural networks,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 550–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. B. D. Rodrigues and M. J. Stevenson, “Takeover prediction using forecast combinations,” International Journal of Forecasting, vol. 29, no. 4, pp. 628–641, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. N. An, W. Zhao, J. Wang, D. Shang, and E. Zhao, “Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting,” Energy, vol. 49, no. 1, pp. 279–288, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. X. W. Li, S. J. Cho, and S. T. Kim, “Combined use of BP neural network and computational integral imaging reconstruction for optical multiple-image security,” Optics Communications, vol. 315, pp. 147–158, 2014.
  23. R. Hecht-Nelson, “Kolmogorov's mapping neural network existence theorem,” in Proceedings of 1st IEEE Annual International Conference on Neural Networks, pp. 11–13, IEEE Press, San Diego, Calif, USA, 1987.
  24. Z.-H. Guo, J. Wu, H.-Y. Lu, and J.-Z. Wang, “A case study on a hybrid wind speed forecasting method using BP neural network,” Knowledge-Based Systems, vol. 24, no. 7, pp. 1048–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Wang, Z. Sheng, B. Zhou, and S. Zhou, “Lightning potential forecast over Nanjing with denoised sounding-derived indices based on SSA and CS-BP neural network,” Atmospheric Research, vol. 137, pp. 245–256, 2014.