About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 252718, 14 pages
http://dx.doi.org/10.1155/2014/252718
Research Article

Dynamics and Biocontrol: The Indirect Effects of a Predator Population on a Host-Vector Disease Model

1Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
2Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000, China
3School of Finance and Economics, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Received 11 July 2013; Revised 29 November 2013; Accepted 10 December 2013; Published 27 January 2014

Academic Editor: Yanni Xiao

Copyright © 2014 Fengyan Zhou and Hongxing Yao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. T. J. Bailey, The Biomathematics of Malaria, Charles Griffin & Company, High Wycombe, UK, 1982. View at MathSciNet
  2. J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annual Review of Entomology, vol. 45, pp. 371–391, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. K. F. Haynes, “Sublethal effects of neurotoxic insecticides on insect behavior,” Annual Review of Entomology, vol. 33, pp. 149–168, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Jenkins, “Pathogens, parasites and predators of medically important arthropods. Annotated list and bibliography,” Bulletin of the World Health Organization, vol. 30, pp. 1–150, 1964. View at Scopus
  5. E. Legner, “Biological control of diptera of medical and veterinary importance,” Journal of Vector Ecology, vol. 20, pp. 59–120, 1995.
  6. J. R. Stauffer Jr., M. E. Arnegard, M. Cetron et al., “Controlling vectors and hosts of parasitic diseases using fishes,” BioScience, vol. 47, no. 1, pp. 41–49, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Samish and J. Rehacek, “Pathogens and predators of ticks and their potential in biological control,” Annual Review of Entomology, vol. 44, pp. 159–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. E.-J. Scholte, K. Ng'Habi, J. Kihonda et al., “An entomopathogenic fungus for control of adult African malaria mosquitoes,” Science, vol. 308, no. 5728, pp. 1641–1642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kumar and J.-S. Hwang, “Larvicidal efficiency of aquatic predators: a perspective for mosquito biocontrol,” Zoological Studies, vol. 45, no. 4, pp. 447–466, 2006. View at Scopus
  10. R. S. Ostfeld, A. Price, V. L. Hornbostel, M. A. Benjamin, and F. Keesing, “Controlling ticks and tick-borne zoonoses with biological and chemical agents,” BioScience, vol. 56, no. 5, pp. 383–394, 2006. View at Scopus
  11. K. Walker and M. Lynch, “Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential,” Medical and Veterinary Entomology, vol. 21, no. 1, pp. 2–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kay and V. S. Nam, “New strategy against Aedes aegypti in Vietnam,” The Lancet, vol. 365, no. 9459, pp. 613–617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Kittayapong, S. Yoksan, U. Chansang, C. Chansang, and A. Bhumiratana, “Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci,” The American Journal of Tropical Medicine and Hygiene, vol. 78, no. 1, pp. 70–76, 2008. View at Scopus
  14. S. K. Ghosh, S. N. Tiwari, T. S. Sathyanarayan et al., “Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, India,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 99, no. 2, pp. 101–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Ghosh and A. P. Dash, “Larvivorous fish against malaria vectors: a new outlook,” Transactions of the Royal Society of Tropical Medicine & Hygiene, vol. 101, no. 11, pp. 1063–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. F. Luck, B. M. Shepard, and P. E. Kenmore, “Experimental methods for evaluating arthropod natural enemies,” Annual Review of Entomology, vol. 33, pp. 367–389, 1988. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Zehnder, G. M. Gurr, S. Kühne, M. R. Wade, S. D. Wratten, and E. Wyss, “Arthropod pest management in organic crops,” Annual Review of Entomology, vol. 52, pp. 57–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Anderson and R. M. May, “Regulation and stability of host-parasite interactions: I. regulatory processes,” Journal of Animal Ecology, vol. 47, no. 1, pp. 219–247, 1978.
  19. P. D. N. Srinivasu and B. S. R. V. Prasad, “Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation,” Bulletin of Mathematical Biology, vol. 73, no. 10, pp. 2249–2276, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  20. H. Zhang, L. Chen, and J. J. Nieto, “A delayed epidemic model with stage-structure and pulses for pest management strategy,” Nonlinear Analysis, vol. 9, no. 4, pp. 1714–1726, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. S. Bhattacharyya and D. K. Bhattacharya, “Pest control through viral disease: mathematical modeling and analysis,” Journal of Theoretical Biology, vol. 238, no. 1, pp. 177–197, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  22. B. J. Cardinale, C. T. Harvey, K. Gross, and A. R. Ives, “Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem,” Ecology Letters, vol. 6, no. 9, pp. 857–865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Tylianakis and C. M. Romo, “Natural enemy diversity and biological control: making sense of the context-dependency,” Basic and Applied Ecology, vol. 11, no. 8, pp. 657–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. W. Murdoch, J. Chesson, and P. L. Chesson, “Biological control in theory and practice,” The American Naturalist, vol. 125, no. 3, pp. 344–366, 1985. View at Scopus
  25. S. M. Moore, E. T. Borer, and P. R. Hosseini, “Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models,” Journal of the Royal Society Interface, vol. 7, no. 42, pp. 161–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Jeger, J. Holt, F. Van Den Bosch, and L. V. Madden, “Epidemiology of insect-transmitted plant viruses: modelling disease dynamics and control interventions,” Physiological Entomology, vol. 29, no. 3, pp. 291–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. W. Ewald and G. De Leo, “Alternative transmission modes and the evolution of virulence,” in Adaptive Dynamics of Infectious Diseases, U. Dieckmann, J. A. J. Metz, M. W. Sabelis, and K. Sigmund, Eds., pp. 10–26, Cambridge University Press, New York, NY, USA, 2005. View at Publisher · View at Google Scholar
  28. W. E. Fitzgibbon, M. E. Parrott, and G. F. Webb, “Diffusion epidemic models with incubation and crisscross dynamics,” Mathematical Biosciences, vol. 128, no. 1-2, pp. 131–155, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. J. Holt, M. J. Jeger, J. M. Thresh, and G. W. Otim-Nape, “An epidemiological model incorporating vector population dynamics applied to African cassava mosaic virus disease,” Journal of Applied Ecology, vol. 34, no. 3, pp. 793–806, 1997. View at Scopus
  30. S. A. Gourley, R. Liu, and J. Wu, “Eradicating vector-borne diseases via age-structured culling,” Journal of Mathematical Biology, vol. 54, no. 3, pp. 309–335, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. H.-M. Wei, X.-Z. Li, and M. Martcheva, “An epidemic model of a vector-borne disease with direct transmission and time delay,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 895–908, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. J. Tumwiine, J. Y. T. Mugisha, and L. S. Luboobi, “A host-vector model for malaria with infective immigrants,” Journal of Mathematical Analysis and Applications, vol. 361, no. 1, pp. 139–149, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. Z. P. Qiu, Q. K. Kong, X. Z. Li, and M. Martcheva, “The vector-host epidemic model with multiple strains in a patchy environment,” Journal of Mathematical Analysis and Applications, vol. 405, no. 1, pp. 12–36, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  34. A. A. Lashari and G. Zaman, “Global dynamics of vector-borne diseases with horizontal transmission in host population,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 745–754, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. M. J. Jeger, F. Van den Bosch, and L. V. Madden, “Modelling virus-and host-limitation in vectored plant disease epidemics,” Virus Research, vol. 159, no. 2, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. G. Schraiber, A. N. Kaczmarczyk, R. Kwok et al., “Constraints on the use of lifespan-shortening Wolbachia to control dengue fever,” Journal of Theoretical Biology, vol. 297, pp. 26–32, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  37. H. Hughes and N. F. Britton, “Modelling the use of Wolbachia to control dengue fever transmission,” Bulletin of Mathematical Biology, vol. 75, no. 5, pp. 796–818, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. K. W. Okamoto and P. Amarasekare, “The biological control of disease vectors,” Journal of Theoretical Biology, vol. 309, pp. 47–57, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  39. C. S. Holling, “The functional response of predators to prey density and its role in mimicry and population regulations,” Memoirs of the Entomological Society of Canada, vol. 45, pp. 3–60, 1965. View at Publisher · View at Google Scholar
  40. O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. P. Van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1-2, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. J. K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1969. View at MathSciNet
  43. H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1995. View at MathSciNet
  44. H. L. Smith, “Cooperative systems of differential equations with concave nonlinearities,” Nonlinear Analysis: Theory, Methods & Applications, vol. 10, no. 10, pp. 1037–1052, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. C. Castillo-Chavez and H. R. Thieme, “Asymptotically autonomous epidemic models,” in Mathematical Population Dynamics: Analysis of Heterogeneity, O. Arino and M. Kimmel, Eds., vol. 1 of Theory of Epidemics, pp. 33–50, Wuerz, Winnipeg, Canada, 1995.
  46. J. J. Tewa, V. Y. Djeumen, and S. Bowong, “Predator-prey model with Holling response function of type II and SIS infectious disease,” Applied Mathematical Modelling, vol. 37, no. 7, pp. 4825–4841, 2013. View at Publisher · View at Google Scholar · View at MathSciNet