About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 342893, 10 pages
http://dx.doi.org/10.1155/2014/342893
Research Article

Stochastic Risk and Uncertainty Analysis for Shale Gas Extraction in the Karoo Basin of South Africa

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

Received 4 November 2013; Accepted 9 November 2013; Published 5 February 2014

Academic Editor: Hossein Jafari

Copyright © 2014 Abdon Atangana and Gerrit van Tonder. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We made use of groundwater flow and mass transport equations to investigate the crucial potential risk of water pollution from hydraulic fracturing especially in the case of the Karoo system in South Africa. This paper shows that the upward migration of fluids will depend on the apertures of the cement cracks and fractures in the rock formation. The greater the apertures, the quicker the movement of the fluid. We presented a novel sampling method, which is the combination of the Monte Carlo and the Latin hypercube sampling. The method was used for uncertainties analysis of the apertures in the groundwater and mass transport equations. The study reveals that, in the case of the Karoo, fracking will only be successful if and only if the upward methane and fracking fluid migration can be controlled, for example, by plugging the entire fracked reservoir with cement.