About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 478567, 11 pages
http://dx.doi.org/10.1155/2014/478567
Research Article

Robust Model Predictive Control of Networked Control Systems under Input Constraints and Packet Dropouts

1College of Engineering, Bohai University, Jinzhou, Liaoning 121013, China
2Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway
3Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China

Received 22 May 2014; Accepted 4 June 2014; Published 16 July 2014

Academic Editor: Josep M. Rossell

Copyright © 2014 Deyin Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. Camacho and C. B. Alba, Model Predictive Control, Springer, 2013.
  2. P. J. Campo and M. Morari, “Robust model predictive control,” in Proceedings of the American Control Conference, pp. 1021–1026, IEEE, 1987.
  3. R. Yang, G. Liu, P. Shi, C. Thomas, and M. V. Basin, “Predictive output feedback control for networked control systems,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 512–520, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. Y. Xia, H. Yang, P. Shi, and M. Fu, “Constrained infinite-horizon model predictive control for fuzzy-discrete-time systems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 429–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Casavola, M. Giannelli, and E. Mosca, “Min-max predictive control strategies for input-saturated polytopic uncertain systems,” Automatica, vol. 36, no. 1, pp. 125–133, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. J. H. Lee and Z. Yu, “Worst-case formulations of model predictive control for systems with bounded parameters,” Automatica, vol. 33, no. 5, pp. 763–781, 1997. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2402–2411, 2013.
  9. S. Rakovic, Robust control of constrained discrete time systems: characterization and implementation [Ph.D. thesis], Imperial College London, University of London, 2005.
  10. H. R. Karimi, “Robust H filter design for uncertain linear systems over network with network-induced delays and output quantization,” Modeling, Identification and Control, vol. 30, no. 1, pp. 27–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. H. Li, X. Jing, H.-K. Lam, and P. Shi, “Fuzzy sampled-data control for uncertain vehicle suspension systems,” IEEE Transactions on Cybernetics, vol. 44, no. 7, pp. 1111–1126, 2014. View at Publisher · View at Google Scholar
  14. H. Li, H. Liu, H. Gao, and P. Shi, “Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 342–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Li, X. Jing, and H. R. Karimi, “Output-feedback-based H control for vehicle suspension systems with control delay,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Li, J. Yu, C. Hilton, and H. Liu, “Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3328–3338, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Li, H. Gao, P. Shi, and X. Zhao, “Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach,” Automatica, 2014. View at Publisher · View at Google Scholar
  18. F. A. Cuzzola, J. C. Geromel, and M. Morari, “An improved approach for constrained robust model predictive control,” Automatica, vol. 38, no. 8, pp. 1183–1189, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. J. Wang and J. B. Rawlings, “A new robust model predictive control method I: theory and computation,” Journal of Process Control, vol. 14, no. 3, pp. 231–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. J. Campo and M. Morari, “∞-norm formulation of model predictive control problems,” in Proceedings of the IEEE American Contro Conference, pp. 339–343, Seattle, Wash, USA, June 1986.
  22. M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. Z. Wan and M. V. Kothare, “Robust output feedback model predictive control using off-line linear matrix inequalities,” Journal of Process Control, vol. 12, no. 7, pp. 763–774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Gao and T. Chen, “Network-based H output tracking control,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 655–667, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. Y. Zhao, H. Gao, J. Lam, and B. Du, “Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 750–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. R. Karimi, N. A. Duffie, and S. Dashkovskiy, “Local capacity H control for production networks of autonomous work systems with time-varying delays,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 4, pp. 849–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. R. Karimi, “Delay-range-dependent linear matrix inequality approach to quantized H control of linear systems with network-induced delays and norm-bounded uncertainties,” Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering, vol. 224, no. 6, pp. 689–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Yang, P. Shi, G. P. Liu, and H. Gao, “Network-based feedback control for systems with mixed delays based on quantization and dropout compensation,” Automatica, vol. 47, no. 12, pp. 2805–2809, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. H. Gao and T. Chen, “Stabilization of nonlinear systems under variable sampling: a fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 5, pp. 972–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Gao, Y. Zhao, J. Lam, and K. Chen, “Hbm∞ fuzzy filtering of nonlinear systems with intermittent measurements,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 291–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Chai, L. Zhao, J. Qiu, F. Liu, and J. Fan, “Integrated network-based model predictive control for setpoints compensation in industrial processes,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 417–426, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Zhang, Y. Xia, and P. Shi, “Design and stability analysis of networked predictive control systems,” IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1495–1501, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sun, “Linear optimal state and input estimators for networked control systems with multiple packet dropouts,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 10, pp. 7289–7305, 2012. View at Scopus
  34. D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, “Robust output feedback model predictive control of constrained linear systems: time varying case,” Automatica, vol. 45, no. 9, pp. 2082–2087, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  35. R. Moitie, M. Quincampoix, and V. M. Veliov, “Optimal control of discrete-time uncertain systems with imperfect measurement,” Institute of Electrical and Electronics Engineers: Transactions on Automatic Control, vol. 47, no. 11, pp. 1909–1914, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus