About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 534896, 8 pages
http://dx.doi.org/10.1155/2014/534896
Research Article

Dynamic Analysis and Chaos of the 4D Fractional-Order Power System

School of Mathematics and Computational Science, Yantai University, Yantai 264005, China

Received 24 December 2013; Accepted 14 January 2014; Published 23 February 2014

Academic Editor: Xinguang Zhang

Copyright © 2014 Fengyun Sun and Qin Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Arena, R. Caponetto, L. Fortuna, and D. Porto, “Chaos in a fractional order duffing system,” in Proceedings of the ECCTD, pp. 1259–1262, Budapest, Hungary, 1997.
  2. Z.-M. Ge and C.-Y. Ou, “Chaos in a fractional order modified Duffing system,” Chaos, Solitons and Fractals, vol. 34, no. 2, pp. 262–291, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. W. Ahmad, R. El-khazali, and A. S. Elwakil, “Fractional-order Wien-bridge oscillator,” Electronics Letters, vol. 37, no. 18, pp. 1110–1112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. W. M. Ahmad and J. C. Sprott, “Chaos in fractional-order autonomous nonlinear systems,” Chaos, Solitons and Fractals, vol. 16, no. 2, pp. 339–351, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. W. M. Ahmad and A. M. Harb, “On nonlinear control design for autonomous chaotic systems of integer and fractional orders,” Chaos, Solitons and Fractals, vol. 18, no. 4, pp. 693–701, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. X. Zhang, L. Liu, and Y. Wu, “The uniqueness of positive solution for a singular fractional differential system involving derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 6, pp. 1400–1409, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. X. Zhang, L. Liu, and Y. Wu, “Multiple positive solutions of a singular fractional differential equation with negatively perturbed term,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1263–1274, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. X. Zhang, L. Liu, and Y. Wu, “The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8526–8536, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. X. Zhang, L. Liu, and Y. Wu, “Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 1420–1433, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  10. H. H. Sun, A. A. Abdelwahab, and B. Onaral, “Linear approximation of transfer function with a pole of fractional power,” IEEE Transactions on Automatic Control, vol. 29, no. 5, pp. 441–444, 1984. View at Zentralblatt MATH · View at Scopus
  11. K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. S. Tavazoei and M. Haeri, “Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems,” IET Signal Processing, vol. 1, no. 4, pp. 171–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Tavazoei and M. Haeri, “Limitations of frequency domain approximation for detecting chaos in fractional order systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 4, pp. 1299–1320, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 3–22, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. K. Sun, X. Wang, and J. C. Sprott, “Bifurcations and chaos in fractional-order simplified Lorenz system,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 20, no. 4, pp. 1209–1219, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. I.-D. Chiang, C.-W. Liu, P. P. Varaiya, F. F. Wu, and M. G. Lauby, “Chaos in a simple power system,” IEEE Transactions on Power Systems, vol. 8, no. 4, pp. 1407–1409, 1993.
  19. Z. Jing, D. Xu, Y. Chang, and L. Chen, “Bifurcations, chaos, and system collapse in a three node power system,” International Journal of Electrical Power and Energy System, vol. 25, no. 6, pp. 443–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Grillo, S. Massucco, A. Morini, A. Pitto, and F. Silvestre, “Bifurcation analysis and Chaos detection in power systems,” in Proceedings of the 43rd International Universities Power Engineering Conference (UPECn '08), pp. 1–6, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-D. Chiang, I. Dobson, R. J. Thomas, J. S. Thorp, and L. Fekih-Ahmed, “On voltage collapse in electric power systems,” IEEE Transactions on Power Systems, vol. 5, no. 2, pp. 601–611, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Caputo, “Linear models of dissipation whose Q is almost frequency Independent-II.,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529–539, 1967.