About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 731057, 4 pages
http://dx.doi.org/10.1155/2014/731057
Research Article

Numerical Solution of Singularly Perturbed Delay Differential Equations with Layer Behavior

1Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 4 September 2013; Accepted 24 December 2013; Published 16 January 2014

Academic Editor: Aref Jeribi

Copyright © 2014 F. Ghomanjani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Patidar and K. K. Sharma, “ϵ-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay,” Applied Mathematics and Computation, vol. 175, no. 1, pp. 864–890, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  2. M. K. Kadalbajoo and K. K. Sharma, “Numerical treatment for singularly perturbed nonlinear differential difference equations with negative shift,” Nonlinear Analysis: Theory, Methods and Applications, vol. 63, no. 5, pp. e1909–e1924, 2005.
  3. M. K. Kadalbajoo and K. K. Sharma, “Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior,” Electronic Transactions on Numerical Analysis, vol. 23, pp. 180–201, 2006. View at Zentralblatt MATH · View at MathSciNet
  4. P. Rai and K. K. Sharma, “Numerical analysis of singularly perturbed delay differential turning point problem,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3483–3498, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. C. G. Lange and R. M. Miura, “Singular perturbation analysis of boundary value problems for differential-difference equations. V: small shifts with layer behavior,” SIAM Journal on Applied Mathematics, vol. 54, no. 1, pp. 249–272, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. M. C. Mackey and L. Glass, “Oscillations and chaos in physiological control system,” Science, vol. 197, pp. 287–289, 1997.
  7. A. Longtin and J. G. Milton, “Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback,” Mathematical Biosciences, vol. 90, no. 1-2, pp. 183–199, 1988. View at Publisher · View at Google Scholar · View at MathSciNet
  8. V. Y. Glizer, “Asymptotic analysis and solution of a finite-horizon H control problem for singularly-perturbed linear systems with small state delay,” Journal of Optimization Theory and Applications, vol. 117, no. 2, pp. 295–325, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. C. G. Lange and R. M. Miura, “Singular perturbation analysis of boundary value problems for differential-difference equations,” SIAM Journal on Applied Mathematics, vol. 42, no. 3, pp. 502–531, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. C. G. Lange and R. M. Miura, “Singular perturbation analysis of boundary value problems for differential-difference equations. VI: small shifts with rapid oscillations,” SIAM Journal on Applied Mathematics, vol. 54, no. 1, pp. 273–283, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. K. Kadalbajoo and K. K. Sharma, “Numerical analysis of singularly perturbed delay differential equations with layer behavior,” Applied Mathematics and Computation, vol. 157, no. 1, pp. 11–28, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. K. Kadalbajoo and K. K. Sharma, “Numerical treatment of a mathematical model arising from a model of neuronal variability,” Journal of Mathematical Analysis and Applications, vol. 307, no. 2, pp. 606–627, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. M. K. Kadalbajoo and K. K. Sharma, “A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 692–707, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. P. Rai and K. K. Sharma, “Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability,” Computers & Mathematics with Applications, vol. 63, no. 1, pp. 118–132, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. M. Amiraliyev and F. Erdogan, “Uniform numerical method for singularly perturbed delay differential equations,” Computers & Mathematics with Applications, vol. 53, no. 8, pp. 1251–1259, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. I. G. Amiraliyeva and G. M. Amiraliyev, “Uniform difference method for parameterized singularly perturbed delay differential equations,” Numerical Algorithms, vol. 52, no. 4, pp. 509–521, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. F. Ghomanjani, M. H. Farahi, and M. Gachpazan, “Bézier control points method to solve constrained quadratic optimal control of time varying linear systems,” Computational & Applied Mathematics, vol. 31, no. 3, pp. 433–456, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. F. Ghomanjani, A. Kılıçman, and S. Effati, “Numerical solution for IVP in Volterra type linear integro-differential equations system,” Abstract and Applied Analysis, vol. 2013, Article ID 490689, 4 pages, 2013. View at Publisher · View at Google Scholar