About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 745296, 12 pages
http://dx.doi.org/10.1155/2014/745296
Research Article

Bifurcation Analysis of a Singular Bioeconomic Model with Allee Effect and Two Time Delays

1Department of Science, Northeastern University, Shenyang, Liaoning 110819, China
2Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei 445000, China

Received 12 September 2013; Accepted 16 January 2014; Published 10 March 2014

Academic Editor: Shengqiang Liu

Copyright © 2014 Xue Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Gordon, “Economic theory of a common property resource: the fishery,” Journal of Political Economy, vol. 62, no. 2, pp. 124–142, 1954. View at Publisher · View at Google Scholar
  2. X. Zhang, Q.-L. Zhang, and Y. Zhang, “Bifurcations of a class of singular biological economic models,” Chaos, Solitons & Fractals, vol. 40, no. 3, pp. 1309–1318, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. W. Liu, C. J. Fu, and B. S. Chen, “Hopf bifurcation for a predator–prey biological economic system with Holling type II functional response,” Journal of the Franklin Institute, vol. 348, no. 6, pp. 1114–1127, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  4. C. Liu, Q. L. Zhang, X. Zhang, and X. D. Duan, “Dynamical behavior in a stage-structured differential-algebraic prey–predator model with discrete time delay and harvesting,” Journal of Computational and Applied Mathematics, vol. 231, no. 2, pp. 612–625, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  5. B. S. Chen and J. Chen, “Bifurcation and chaotic behavior of a discrete singular biological economic system,” Applied Mathematics and Computation, vol. 219, no. 5, pp. 2371–2386, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  6. J. K. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1977.
  7. J. K. Hale and S. M. Verduyn Lunel, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1993.
  8. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993. View at MathSciNet
  9. S. Yuan and Y. Song, “RETRACTED: stability and Hopf bifurcations in a delayed Leslie—Gower predator—prey system,” Journal of Mathematical Analysis and Applications, vol. 355, no. 1, pp. 82–100, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. J. Wu, Theory and Applications of Partial Functional-Differential Equations, vol. 119 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  11. P. Yongzhen, L. Shuping, and L. Changguo, “Effect of delay on a predator–prey model with parasitic infection,” Nonlinear Dynamics, vol. 63, no. 3, pp. 311–321, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. Y. Zhang and Q. Zhang, “Dynamic behavior in a delayed stage-structured population model with stochastic fluctuation and harvesting,” Nonlinear Dynamics, vol. 66, no. 1-2, pp. 231–245, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. T. K. Kar and A. Ghorai, “Dynamic behaviour of a delayed predator–prey model with harvesting,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9085–9104, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. K. Chakraborty, M. Chakraborty, and T. K. Kar, “Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 4, pp. 613–625, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. G. D. Zhang, L. L. Zhu, and B. S. Chen, “Hopf bifurcation and stability for a differential-algebraic biological economic system,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 330–338, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  16. S. Yuan and Y. Song, “Bifurcation and stability analysis for a delayed Leslie—Gower predator—prey system,” IMA Journal of Applied Mathematics, vol. 74, no. 4, pp. 574–603, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  17. S. Gakkhar, K. Negi, and S. K. Sahani, “Effects of seasonal growth on ratio dependent delayed prey predator system,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 850–862, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. Y. Song, Y. Peng, and J. Wei, “Bifurcations for a predator–prey system with two delays,” Journal of Mathematical Analysis and Applications, vol. 337, no. 1, pp. 466–479, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. Y. Ma, “Global Hopf bifurcation in the Leslie—Gower predator—prey model with two delays,” Nonlinear Analysis: Real World Applications, vol. 13, no. 1, pp. 370–375, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  20. W. C. Allee, Animal Aggretions: A Study in General Sociology, University of Chicago Press, Chicago, Ill, USA, 1931.
  21. B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1981. View at MathSciNet
  22. C.-H. Zhang, X.-P. Yan, and G.-H. Cui, “Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 4141–4153, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. F. Li and H. Li, “Hopf bifurcation of a predator–prey model with time delay and stage structure for the prey,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 672–679, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. J.-F. Zhang, “Bifurcation analysis of a modified Holling-Tanner predator–prey model with time delay,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1219–1231, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. N. Bairagi and D. Jana, “On the stability and Hopf bifurcation of a delay-induced predator–prey system with habitat complexity,” Applied Mathematical Modelling, vol. 35, no. 7, pp. 3255–3267, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus