About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 747092, 9 pages
http://dx.doi.org/10.1155/2014/747092
Research Article

Exact Boundary Controller Design for a Kind of Enhanced Oil Recovery Models

1State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2Department of Mathematics, Zhejiang University, Hangzhou 310027, China
3Department of Mathematics, College of Science, Southwest Petroleum University, Chengdu 610500, China

Received 23 October 2013; Revised 23 December 2013; Accepted 29 December 2013; Published 17 February 2014

Academic Editor: Stanislaw Migorski

Copyright © 2014 Ping Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Abriola, T. J. Dekker, and K. D. Pennell, “Surfactant-enhanced solubilization of residual dodecane in soil columns—2. Mathematical modeling,” Environmental Science and Technology, vol. 27, no. 12, pp. 2341–2351, 1993. View at Scopus
  2. P. Daripa and G. Paşa, “An optimal viscosity profile in enhanced oil recovery by polymer flooding,” International Journal of Engineering Science, vol. 42, no. 19-20, pp. 2029–2039, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. B. Ju, T. Fan, and M. Ma, “Enhanced oil recovery by flooding with hydrophilic nanoparticles,” China Particuology, vol. 4, no. 1, pp. 41–46, 2006.
  4. K. C. Taylor and H. A. Nasr-El-Din, “Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review,” Journal of Petroleum Science and Engineering, vol. 19, no. 3-4, pp. 265–280, 1998. View at Scopus
  5. J. Hou, Z. Liu, S. Zhang, X. Yue, and J. Yang, “The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery,” Journal of Petroleum Science and Engineering, vol. 47, no. 3-4, pp. 219–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Z. Wever, F. Picchioni, and A. A. Broekhuis, “Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution,” Progress in Polymer Science, vol. 36, no. 11, pp. 1558–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Wang, X. Fang, B. Bai et al., “Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery,” Biotechnology and Bioengineering, vol. 98, no. 4, pp. 842–853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Sen, “Biotechnology in petroleum recovery: the microbial EOR,” Progress in Energy and Combustion Science, vol. 34, no. 6, pp. 714–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Desouky, M. M. Abdel-Daim, M. H. Sayyouh, and A. S. Dahab, “Modelling and laboratory investigation of microbial enhanced oil recovery,” Journal of Petroleum Science and Engineering, vol. 15, no. 2–4, pp. 309–320, 1996. View at Scopus
  10. Y. Lei, S. Li, X. Zhang, Q. Zhang, and L. Guo, “Optimal control of polymer flooding based on maximum principle,” Journal of Applied Mathematics, vol. 2012, Article ID 987975, 20 pages, 2012. View at Publisher · View at Google Scholar
  11. N. Lai, X. Qin, Z. Ye, Q. Peng, Y. Zhang, and Z. Ming, “Synthesis and evaluation of a water-soluble hyperbranched polymer as enhanced oil recovery chemical,” Journal of Chemistry, vol. 2013, Article ID 824785, 11 pages, 2013. View at Publisher · View at Google Scholar
  12. E. L. Isaacson and J. B. Temple, “Analysis of a singular hyperbolic system of conservation laws,” Journal of Differential Equations, vol. 65, no. 2, pp. 250–268, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. D. Schaeffer and M. Shearer, “Riemann problems for nonstrictly hyperbolic 2 × 2 systems of conservation laws,” Transactions of the American Mathematical Society, vol. 304, pp. 267–305, 1987.
  14. A. Tveito and R. Winther, “Existence, uniqueness, and continuous dependence for a system of hyperbolic conservation laws modeling polymer flooding,” SIAM Journal on Mathematical Analysis, vol. 22, no. 4, pp. 905–933, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. A. J. de Souza, “Wave structure for a nonstrictly hyperbolic system of three conservation laws,” Mathematical and Computer Modelling, vol. 22, no. 9, pp. 1–29, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. P. Daripa, J. Glimm, B. Lindquist, and O. McBryan, “Polymer floods: a case study of nonlinear wave analysis and of instability control in tertiary oil recovery,” SIAM Journal on Applied Mathematics, vol. 48, no. 2, pp. 353–373, 1988. View at Scopus
  17. J. Lu, D. W. C. Ho, and Z. Wang, “Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers,” IEEE Transactions on Neural Networks, vol. 20, no. 10, pp. 1617–1629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lu, J. Kurths, J. Cao, N. Mahdavi, and C. Huang, “Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 2, pp. 285–292, 2012.
  19. W. Yu, G. Chen, and J. Lü, “On pinning synchronization of complex dynamical networks,” Automatica, vol. 45, no. 2, pp. 429–435, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. T. Li and B.-Y. Zhang, “Global exact controllability of a class of quasilinear hyperbolic systems,” Journal of Mathematical Analysis and Applications, vol. 225, no. 1, pp. 289–311, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. D.-X. Kong and H. Yao, “Global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws. II,” SIAM Journal on Control and Optimization, vol. 44, no. 1, pp. 140–158, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Wiley, 1994.