About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 964143, 7 pages
http://dx.doi.org/10.1155/2014/964143
Research Article

Finite Time Stabilization of the Four Tanks System: Extensions to the Uncertain Systems

1Ecole Nationale d’Ingénieurs de Monastir, Université de Monsatir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia
2CNRS, LAAS, 7 Avenue du Colonel Roche, 31077 Toulouse, France
3Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse, France

Received 26 November 2013; Accepted 13 January 2014; Published 4 March 2014

Academic Editor: Hui Zhang

Copyright © 2014 Chakib Ben Njima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tarbouriech and G. Garcia, Control of Uncertain Systems with Bounded Inputs, Springer, Berlin, Germany, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  2. S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. P. M. Abhilash and A. D. Mahindrakar, “Stabilization of a circular ball-and-beam system with input and state constraints using linear matrix inequalities,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC ’08), pp. 3201–3205, Singapore, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Dorato, “Short time stability in linear time-varying systems,” in Proceedings of the IRE International Convention Record Part 4, pp. 83–87, New York, NY, USA, 1961.
  5. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Press, Philadelphia, Pa, USA, 1994. View at Publisher · View at Google Scholar · View at MathSciNet
  6. S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control: The Parametric Approach, Prentice Hall, Upper Saddle River, NJ, USA, 1995.
  7. T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations,” Annals of Mathematics, vol. 20, no. 4, pp. 292–296, 1919. View at Publisher · View at Google Scholar · View at MathSciNet
  8. L. Weiss and E. F. Infante, “Finite time stability under perturbing forces and on product spaces,” IEEE Transactions on Automatic Control, vol. 12, no. 1, pp. 54–59, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. E. Moulay, Contribution à l’étude de la stabilité en temps fini et de la stabilisation [Thèse de Doctorat], Ecole centrale de Lille, 2005.
  10. W. B. Mabrouk, C. B. Njima, H. Messaoud, and G. Garcia, “Finite-time stabilization of nonlinear affine systems,” Journal Européen des Systèmes Automatisés, vol. 44, no. 3, pp. 327–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. B. Njima, W. B. Mabrouk, G. Garcia, and H. Messaoud, “Robust finite-time stabilization of nonlinear systems,” International Review of Automatic Control, vol. 4, no. 3, pp. 362–369, 2011.
  12. G. Garcia, S. Tarbouriech, and J. Bernussou, “Finite-time stabilization of linear time-varying continuous systems,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 364–369, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. L. T. Grujic, “On practical stability,” International Journal of Control, vol. 17, no. 4, pp. 881–887, 1973. View at Publisher · View at Google Scholar · View at Zentralblatt MATH