About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2012 (2012), Article ID 124176, 9 pages
http://dx.doi.org/10.1155/2012/124176
Research Article

Chaotic Neural Network for Biometric Pattern Recognition

Department of Computer Science, University of Calgary, Calgary, AB, Canada T2N 1N4

Received 8 December 2011; Revised 24 February 2012; Accepted 25 February 2012

Academic Editor: Sheryl Brahnam

Copyright © 2012 Kushan Ahmadian and Marina Gavrilova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Gao and M. K. H. Leung, “Face recognition using line edge map,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 764–779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Wiskott, J.-M. Fellous, N. Krüger, and C. D. Von Malsburg, “Face recognition by elastic bunch graph matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775–779, 1997. View at Publisher · View at Google Scholar
  4. P. J. Phillips, “Support vector machines applied to face recognition,” in Proceedings of Advances in Neural Information Processing Systems, vol. 11, pp. 113–123, 1998.
  5. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1450–1464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711–720, 1997. View at Scopus
  7. K. I. Kim, K. Jung, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Signal Processing Letters, vol. 9, no. 2, pp. 40–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Computation, vol. 12, no. 10, pp. 2385–2404, 2000.
  9. S. Z. Li and J. Lu, “Face recognition using the nearest feature line method,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 439–443, 1999. View at Publisher · View at Google Scholar
  10. P. P. Paul, M. M. Monwar, M. L. Gavrilova, and P. S. P. Wang, “Rotation invariant multiview face detection using skin color regressive model and support vector regression,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 24, no. 8, pp. 1261–1280, 2010. View at Publisher · View at Google Scholar
  11. M. L. Gavrilova and K. Ahmadian, “Dealing with biometric multi-dimensionality through chaotic neural network methodology,” International Journal of Information Technology and Management, vol. 11, no. 1-2, pp. 18–34, 2012. View at Publisher · View at Google Scholar
  12. H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering,” ACM Transactions on Knowledge Discovery from Data, vol. 3, no. 1, pp. 1–58, 2009.
  13. E. Achtert, C. Böhm, J. David, P. Kröger, and A. Zimek, “Robust clustering in arbitrarily oriented subspaces,” in Proceedings of the 8th SIAM International Conference on Data Mining (SDM '08), pp. 763–774, Atlanta, Ga, USA, 2008.
  14. W. N. Anderson Jr. and T. D. Morley, “Eigenvalues of the Laplacian of a graph,” Linear and Multilinear Algebra, vol. 18, pp. 141–145, 1985.
  15. M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” in Proceedings of Advances in Neural Information Processing Systems, vol. 14, pp. 1–17, 2002.
  16. K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image manifolds by semidefinite programming,” International Journal of Computer Vision, vol. 70, no. 1, pp. 77–90, 2006. View at Publisher · View at Google Scholar · View at Scopus