About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2012 (2012), Article ID 457351, 7 pages
http://dx.doi.org/10.1155/2012/457351
Research Article

A Cultural Algorithm for the Representation of Mitochondrial Population

Department of Informatics, Ionian University, Plateia Tsirigoti 7, 49100 Corfu, Greece

Received 31 May 2012; Accepted 14 August 2012

Academic Editor: Catalina Cocianu

Copyright © 2012 Athanasios Alexiou and Panayiotis Vlamos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Batenburg, “An evolutionary algorithm for discrete tomography,” Discrete Applied Mathematics, vol. 151, no. 1-3, pp. 36–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. J. Batenburg and W. J. Palenstijn, “A new exam timetabling algorithm,” in Proceedings of the 15th Belgium-Netherlands Artificial Intelligence Conference (BNAIC'03), T. Heskes, P. Lucas, L. Vuurpijl, and W. Wiegerinck, Eds., pp. 19–26, 2003.
  3. R. G. Reynolds, “An introduction to cultural algorithms,” in Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 131–139, 1994.
  4. D. E. Goldberg, Genetic Algorithms, Addison-Wesley Longman, USA, 1998.
  5. R. G. Reynolds, “An introdution to cultural algorithms,” Cultural Algorithms Repository, 1998.
  6. R. G. Reynolds, E. Zannoni, and R. M. Posner, “Learning to understand software using cultural algorithms,” Cultural Algorithms Repository, 1998.
  7. A. S. Reichert and W. Neupert, “Mitochondriomics or what makes us breathe,” Trends in Genetics, vol. 20, no. 11, pp. 555–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Lill and G. Kispal, “Maturation of cellular Fe-S proteins: an essential function of mitochondria,” Trends in Biochemical Sciences, vol. 25, no. 8, pp. 352–356, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Vandecasteele, G. Szabadkai, and R. Rizzuto, “Mitochondrial calcium homeostasis: mechanisms and molecules,” IUBMB Life, vol. 52, no. 3-5, pp. 213–219, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Trifunovic, “Mitochondrial DNA and ageing,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 611–617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science, vol. 283, no. 5407, pp. 1482–1488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Mannella, “The relevance of mitochondrial membrane topology to mitochondrial function,” Biochimica et Biophysica Acta, vol. 1762, no. 2, pp. 140–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Perkins, C. Renken, M. E. Martone, S. J. Young, M. Ellisman, and T. Frey, “Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts,” Journal of Structural Biology, vol. 119, no. 3, pp. 260–272, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. E. R. S. Kunji, “The role and structure of mitochondrial carriers,” FEBS Letters, vol. 564, no. 3, pp. 239–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Lill and G. Kispal, “Mitochondrial ABC transporters,” Research in Microbiology, vol. 152, no. 3-4, pp. 331–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. B. O'Rourke, “Mitochondrial ion channels,” Annual Review of Physiology, vol. 69, pp. 19–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Palmieri, F. M. Lasorsa, A. Vozza et al., “Identification and functions of new transporters in yeast mitochondria,” Biochimica et Biophysica Acta, vol. 1459, no. 2-3, pp. 363–369, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Neupert and J. M. Herrmann, “Translocation of proteins into mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 723–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Chan, “Mitochondrial fusion and fission in mammals,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 79–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Chan, “Mitochondrial dynamics in disease,” New England Journal of Medicine, vol. 356, no. 17, pp. 1707–1709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human Molecular Genetics, vol. 18, no. 2, pp. R169–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Alexiou, J. Rekkas, and P. Vlamos, “Modeling the mitochondrial dysfunction in neurogenerative diseases due to high H+ concentration,” Bioinformation, vol. 6, no. 5, pp. 173–175, 2011. View at Publisher · View at Google Scholar
  24. L. J. Martin, “Mitochondrial and cell death mechanisms in neurodegenerative diseases,” Pharmaceuticals, vol. 3, pp. 839–915, 2010. View at Publisher · View at Google Scholar
  25. R. J. Youle and M. Karbowski, “Mitochondrial fission in apoptosis,” Nature Reviews Molecular Cell Biology, vol. 6, no. 8, pp. 657–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” Journal of Cell Science, vol. 118, no. 23, pp. 5411–5419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Campello, R. A. Lacalle, M. Bettella, S. Mañes, L. Scorrano, and A. Viola, “Orchestration of lymphocyte chemotaxis by mitochondrial dynamics,” Journal of Experimental Medicine, vol. 203, no. 13, pp. 2879–2886, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Chen, J. M. McCaffery, and D. C. Chan, “Mitochondrial fusion protects against neurodegeneration in the cerebellum,” Cell, vol. 130, no. 3, pp. 548–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717–1721, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. T. Alexiou, P. M. Vlamos, and K. G. Volikas, “A theoretical artificial approach on reducing mitochondrial abnormalities in Alzheimer's disease,” in Proceedings of the 10th International Conference on Information Technology and Applications in Biomedicine: Emerging Technologies for Patient Specific Healthcare (ITAB'10), Corfu, Greece, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. S. Khachaturian, “Diagnosis of Alzheimer's disease,” Archives of Neurology, vol. 42, no. 11, pp. 1097–1105, 1985. View at Scopus
  32. S. S. Mirra, A. Heyman, D. McKeel et al., “The Consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease,” Neurology, vol. 41, no. 4, pp. 479–486, 1991. View at Scopus
  33. K. Hirai, G. Aliev, A. Nunomura et al., “Mitochondrial abnormalities in Alzheimer's disease,” Journal of Neuroscience, vol. 21, no. 9, pp. 3017–3023, 2001. View at Scopus
  34. R. H. Swerdlow and S. M. Khan, “A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 1, pp. 8–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. H. Swerdlow and S. M. Khan, “The Alzheimer's disease mitochondrial cascade hypothesis: an update,” Experimental Neurology, vol. 218, no. 2, pp. 308–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wang, B. Su, H. Fujioka, and X. Zhu, “Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients,” American Journal of Pathology, vol. 173, no. 2, pp. 470–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Geert, A Interpretação Das Culturas, Editora Guanabara, Rio de Janeiro, Brazil, 1989.
  38. N. Gessler, Artificial Culture—Experiments in Synthetic Anthropology, 1999.
  39. J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Mass, USA, 1992.
  40. J. Barkow, L. Cosmides, and J. Tooby, The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Oxford University Press, USA, 1992.
  41. A. Johnson and T. Earle, The Evolution of Human Societies: from Foraging Group to Agrarian State, Stanford Univ Press, 2000.
  42. P. Richerson and R. Boyd, Not by Genes Alone: How Culture Transformed Human Evolution, University of Chicago Press, 2005.
  43. H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, “Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development,” Journal of Cell Biology, vol. 160, no. 2, pp. 189–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Dobrzyński, J. V. Rodríguez, J. A. Kaandorp, and J. G. Blom, “Computational methods for diffusion-influenced biochemical reactions,” Bioinformatics, vol. 23, no. 15, pp. 1969–1977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Długosz and J. Trylska, “Diffusion in crowded biological environments: applications of Brownian dynamics,” BMC Biophysics, vol. 4, no. 1, Article no. 3, 2011. View at Scopus
  46. D. L. Ermak and J. A. McCammon, “Brownian dynamics with hydrodynamic interactions,” The Journal of Chemical Physics, vol. 69, no. 4, pp. 1352–1360, 1978. View at Scopus
  47. S. H. Northrup and H. P. Erickson, “Kinetics of protein-protein association explained by Brownian dynamics computer simulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 8, pp. 3338–3342, 1992. View at Scopus
  48. H. Kim and K. J. Shin, “Exact solution of the reversible diffusion-influenced reaction for an isolated pair in three dimensions,” Physical Review Letters, vol. 82, no. 7, pp. 1578–1581, 1999. View at Scopus
  49. Z. Frazier and F. Alber, “A computational approach to increase time scales in Brownian dynamics-based reaction-diffusion modeling,” Journal of Computational Biology, vol. 19, no. 6, pp. 606–618, 2012. View at Publisher · View at Google Scholar
  50. S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “MASON: a multiagent simulation environment,” Simulation, vol. 81, no. 7, pp. 517–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Liu, D. Weaver, O. Shirihai, and G. Hajnóczky, “Mitochondrial kiss-and-run: interplay between mitochondrial motility and fusion-fission dynamics,” EMBO Journal, vol. 28, no. 20, pp. 3074–3089, 2009. View at Publisher · View at Google Scholar · View at Scopus