About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2012 (2012), Article ID 585072, 12 pages
http://dx.doi.org/10.1155/2012/585072
Research Article

CardioSmart365: Artificial Intelligence in the Service of Cardiologic Patients

1Computer Engineering & Informatics Department, University of Patras, 26500 Patras, Greece
2Department of Informatics, Ionian University, 49100 Corfu, Greece
3General Hospital of Patras “Agios Andreas”, 26335 Patras, Greece
4Department of Applied Informatics in Management & Economy, Faculty of Management and Economics, Technological Educational Institute of Messolonghi, 30200 Messolonghi, Greece

Received 29 June 2012; Accepted 11 September 2012

Academic Editor: Panayiotis Vlamos

Copyright © 2012 Efrosini Sourla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Varlamis and I. Apostolakis, “Medical informatics in the Web 2.0 era,” in Proceedings of the 1st International Symposium on Intelligent Interactive Multimedia Systems and Services, Piraeus, Greece, July 2008.
  2. E. Faliagka, V. N. Syrimpeis, A. Tsakalidis, G. K. Matsopoulos, J. Tsaknakis, and G. Tzimas, “Diagnosis: A global alignment and fusion medical system,” in Proceedings of the 3rd International Conference on Health Informatics, HEALTHINF 2010, pp. 21–28, esp, January 2010. View at Scopus
  3. C. H. Liu, Y. F. Chung, T. W. Chiang, T. S. Chen, and S. D. Wang, “Mobile agent approach for secure integrated medical information systems,” Journal of Medical Systems, vol. 36, no. 5, pp. 2731–2741, 2012. View at Publisher · View at Google Scholar
  4. I. Babaoglu, O. K. Baykan, N. Aygul et al., “A comparison of artificial intelligence methods on determining coronary artery disease,” in Advances in Information Technology, Communications in Computer and Information Science, pp. 18–26, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  5. A. M. Lindquist, P. E. Johansson, G. I. Petersson, B. I. Saveman, and G. C. Nilsson, “The use of the Personal Digital Assistant (PDA) among personnel and students in health care: a review,” Journal of Medical Internet Research, vol. 10, no. 4, article no. e31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Prgomet, A. Georgiou, and J. I. Westbrook, “The impact of mobile handheld technology on hospital physicians' work practices and patient care: a systematic review,” Journal of the American Medical Informatics Association, vol. 16, no. 6, pp. 792–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Gkintzou, T. Papablasopoulou, V. Syrimpeis, E. Sourla, G. Tzimas, and A. Tsakalidis, “A web and smart phone system for tibia open fractures,” in ENTERprise Information Systems, J. Varajão, P. Powell, and R. Martinho, Eds., vol. 221 of Communications in Computer and Information Science, pp. 413–422, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  8. V. L. Patel, E. H. Shortliffe, M. Stefanelli et al., “The coming of age of artificial intelligence in medicine,” Artificial Intelligence in Medicine, vol. 46, no. 1, pp. 5–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Peng, Y. Zhang, and L. Wang, “Artificial intelligence in biomedical engineering and informatics: an introduction and review,” Artificial Intelligence in Medicine, vol. 48, no. 2-3, pp. 71–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. P. Exarchos, M. G. Tsipouras, C. P. Exarchos, C. Papaloukas, D. I. Fotiadis, and L. K. Michalis, “A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree,” Artificial Intelligence in Medicine, vol. 40, no. 3, pp. 187–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. N. Ghazavi and T. W. Liao, “Medical data mining by fuzzy modeling with selected features,” Artificial Intelligence in Medicine, vol. 43, no. 3, pp. 195–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Grando, M. Peleg, M. Cuggia, and D. Glasspool, “Patterns for collaborative work in health care teams,” Artificial Intelligence in Medicine, vol. 53, no. 3, pp. 139–160, 2011. View at Publisher · View at Google Scholar
  13. M. Rowan, T. Ryan, F. Hegarty, and N. O'Hare, “The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors,” Artificial Intelligence in Medicine, vol. 40, no. 3, pp. 211–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Chu, H. Ahn, B. Halwan et al., “A decision support system to facilitate management of patients with acute gastrointestinal bleeding,” Artificial Intelligence in Medicine, vol. 42, no. 3, pp. 247–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Zhou, S. Chen, B. Liu et al., “Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support,” Artificial Intelligence in Medicine, vol. 48, no. 2-3, pp. 139–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Chemlal, S. Colberg, M. Satin-Smith et al., “Blood glucose individualized prediction for type 2 diabetes using iPhone application,” in Proceedings of the 37th Annual Northeast Bioengineering Conference, (NEBEC'11), April 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Silva, I. Lopes, J. Rodrigues, and P. Ray, “SapoFitness: a mobile health application for dietary evaluation,” in Proceedings of the IEEE 13th International Conference on e-Health Networking, Applications and Services, pp. 375–380, June 2011.
  18. F. Sposaro and G. Tyson, “iFall: An android application for fall monitoring and response,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, (EMBC'09), pp. 6119–6122, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Sposaro, J. Danielson, and G. Tyson, “IWander: an Android application for dementia patients,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBC'10), pp. 3875–3878, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. N. K. Boulos, S. Wheeler, C. Tavares, and R. Jones, “How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX,” BioMedical Engineering Online, vol. 10, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Houston, “The best medical Iphone apps for doctors and med students,” October 2010, http://blog.softwareadvice.com/articles/medical/the-best-medical-iphone-apps-for-doctors-and-med-students-1100709/.
  22. QxMD, 2012, http://www.qxmd.com/specialty/medicine/cardiology-medical-apps-iphone-blackberry-android.
  23. Webicina—Cardiology in Social Media, 2012, http://www.webicina.com/cardiology/cardiology-mobile-applications/.
  24. Hearth360 Cardiovascular Wellness Center, May 2012, https://www.heart360.org/Default.aspx.
  25. Microsoft HealthVault Development Center, May 2012, http://msdn.microsoft.com/en-us/healthvault/default.aspx.
  26. G. Guidi, E. Iadanza, M. Pettenati et al., “Heart failure artificial intelligence-based computer aided diagnosis telecare system,” in Impact Analysis of Solutions for Chronic Disease Prevention and Management, M. Donnelly, C. Paggetti, C. Nugent, and M. Mokhtari, Eds., vol. 7251, pp. 278–281, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar
  27. J. W. Wallis, “Invited commentary: use of artificial intelligence in cardiac imaging,” Journal of Nuclear Medicine, vol. 42, no. 8, pp. 1192–1194, 2001. View at Scopus
  28. P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands, “Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption,” Journal of the American Medical Informatics Association, vol. 13, no. 2, pp. 121–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. NAHIT Report, April 2008, http://healthit.hhs.gov/portal/server.pt/gateway/PTARGS_0_10741_848133_0_0_18/10_2_hit_terms.pdf.
  30. A. Sunyaev, D. Chornyi, C. Mauro, and H. Krcmar, “Evaluation framework for personal health records: Microsoft HealthVault vs. Google Health,” in Proceedings of the 43rd Annual Hawaii International Conference on System Sciences, (HICSS'10), usa, January 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Sunyaev, A. Kaletsch, and H. Krcmar, “Comparative evaluation of Google Health API vs Microsoft HealthVault API,” in Proceedings of the 3rd International Conference on Health Informatics, (HEALTHINF'10), pp. 195–201, Valencia, Spain, January 2010. View at Scopus
  32. L. Liao, M. Chen, J. J. Rodrigues, X. Lai, and S. Vuong, “A novel web-enabled healthcare solution on healthvault system,” Journal of Medical Systems, vol. 36, no. 3, pp. 1095–1105, 2012. View at Publisher · View at Google Scholar
  33. Microsoft HealthVault, Apps and Devices, May 2012, http://www.microsoft.com/en-us/healthvault/tools-devices/overview.aspx.
  34. S. Nolan, “Microsoft HealthVault Application Connection Recommendations,” 2010http://download.microsoft.com/download/7/4/E/74EA8944-199C-4F56-B3BB-8105869425BC/HealthVault%20Application%20Integration%20Recommendations%20v1.pdf.