About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2012 (2012), Article ID 927905, 6 pages
http://dx.doi.org/10.1155/2012/927905
Research Article

Under-Actuated Robot Manipulator Positioning Control Using Artificial Neural Network Inversion Technique

Department of Scholarships and Cultural Relations, Ministry of Higher Education and Scientific Research, Al-Nidhal Street, Baghdad, Iraq

Received 18 May 2012; Accepted 8 September 2012

Academic Editor: Joanna Józefowska

Copyright © 2012 Ali T. Hasan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K.-H. Yu, Y. Shito, and H. Inooka, “Position control of an underactuated manipulator using joint friction,” International Journal of Non-Linear Mechanics, vol. 33, no. 4, pp. 607–614, 1998. View at Scopus
  2. K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “Collision-free trajectory planning for a 3-DoF robot with a passive joint,” International Journal of Robotics Research, vol. 19, no. 12, pp. 1171–1184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oriolo and Y. Nakamura, “Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators,” in Proceedings of the 30th IEEE Conference on Decision and Control, pp. 2398–2403, Brighton, UK, December 1991. View at Scopus
  4. O. J. Sordalen, Y. Nakamura, and W. J. Chung, “Design of a nonholonomic manipulator,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 8–13, May 1994. View at Scopus
  5. J. Hauser and R. M. Murray, “Nonlinear controllers for non-integrable systems: the Acrobot example,” in Proceedings of the American Control Conference, pp. 669–671, May 1990. View at Scopus
  6. M. W. Spong, “Swing up control of the acrobot,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 2356–2361, May 1994. View at Scopus
  7. M. D. Berkemeier and R. S. Fearing, “Tracking fast inverted trajectories of the underactuated Acrobot,” IEEE Transactions on Robotics and Automation, vol. 15, no. 4, pp. 740–750, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Takashima, “Control of gymnast on a high bar,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1424–1429, Osaka, Japan, 1991.
  9. F. Saito, T. Fukuda, and F. Arai, “Swing and locomotion control for a two-link Brachiation robot,” IEEE Control Systems Magazine, vol. 14, no. 1, pp. 5–12, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Luca, R. Mattone, and G. Oriolo, “Stabilization of an Underactuated Planar 2R Manipulator,” International Journal of Robust and Nonlinear Control, pp. 181–198, 2000.
  11. A. De Luca and G. Oriolo, “Trajectory planning and control for planar robots with passive last joint,” International Journal of Robotics Research, vol. 21, no. 5-6, pp. 575–590, 2002. View at Scopus
  12. H. Arai and S. Tachi, “Position control of manipulator with passive joints using dynamic coupling,” IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 528–534, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Mukherjee and D. Chen, “Control of free-flying underactuated space manipulators to equilibrium manifolds,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 561–570, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. K.-H. Yu, T. Takahashi, and H. Inooka, “Dynamics and motion control of a two-link robot manipulator with a passive joint,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 311–316, August 1995. View at Scopus
  15. M. Bergerman, C. Lee, and Y. Xu, “Experimental study of an underactuated manipulator,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 317–322, August 1995. View at Scopus
  16. A. D. Mahindrakar, S. Rao, and R. N. Banavar, “Point-to-point control of a 2R planar horizontal underactuated manipulator,” Mechanism and Machine Theory, vol. 41, no. 7, pp. 838–844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. T. Hasan, A. M. S. Hamouda, N. Ismail, I. Aris, and M. H. Marhaban, “Trajectory tracking for a serial robot manipulator passing through singular configurations based on the adaptive kinematics Jacobian method,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 223, no. 3, pp. 393–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. T. Hasan, N. Ismail, A. M. S. Hamouda, I. Aris, M. H. Marhaban, and H. M. A. A. Al-Assadi, “Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations,” Advances in Engineering Software, vol. 41, no. 2, pp. 359–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Begovich, E. N. Sanchez, and M. Maldonado, “Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot,” IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp. 14–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. A. A. Al-Assadi, A. M. S. Hamouda, N. Ismail, and I. Aris, “An adaptive learning algorithm for controlling a two-degree-of-freedom serial ball-and-socket actuator,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 221, no. 7, pp. 1001–1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Kalogirou, “Artificial neural networks in renewable energy systems applications: a review,” Renewable and Sustainable Energy Reviews, vol. 5, no. 4, pp. 373–401, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. T. Hasan, A. M. S. Hamouda, N. Ismail, and H. M. A. A. Al-Assadi, “An adaptive-learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot manipulator,” Advances in Engineering Software, vol. 37, no. 7, pp. 432–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Karlik and S. Aydin, “Improved approach to the solution of inverse kinematics problems for robot manipulators,” Engineering Applications of Artificial Intelligence, vol. 13, no. 2, pp. 159–164, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Köker, “Reliability-based approach to the inverse kinematics solution of robots using Elman's networks,” Engineering Applications of Artificial Intelligence, vol. 18, no. 6, pp. 685–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. T. Hasan, A. M. S. Hamouda, N. Ismail, and H. M. A. A. Al-Assadi, “A new adaptive learning algorithm for robot manipulator control,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 221, no. 4, pp. 663–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Kuroe, Y. Nakai, and T. Mori, “New neural network learning of inverse kinematics of robot manipulator,” in Proceedings of the 1994 IEEE International Conference on Neural Networks, vol. 7, pp. 2819–2824, June 1994. View at Scopus
  27. P. Martín and J. D. R. Millán, “Robot arm reaching through neural inversions and reinforcement learning,” Journal of Robotics and Autonomous Systems, vol. 31, no. 4, pp. 227–246, 2000. View at Scopus
  28. T. Ogawa, H. Matsuura, and H. Kanada, “A solution of inverse kinematics of robot arm using network inversion,” in Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 858–862, November 2005. View at Scopus
  29. K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics Control, Sensing, Vision and Intelligence, McGraw-Hill, New York, NY, USA, 1987.
  30. A. Linden and J. Kindermann, “Inversion of Multilayer Networks,” in Proceedings of the International Joint conference on Neural Networks, vol. 3, p. 188, 1993.