About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2013 (2013), Article ID 271865, 12 pages
http://dx.doi.org/10.1155/2013/271865
Research Article

Artificial Neural Network-Based Fault Distance Locator for Double-Circuit Transmission Lines

Department of Electrical Engineering, National Institute of Technology, Raipur 492010, India

Received 21 May 2012; Accepted 3 January 2013

Academic Editor: Jun He

Copyright © 2013 Anamika Jain. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Agrasar, F. Uriondo, and J. R. Hernández, “Evaluation of uncertainties in double line distance relaying. A global sight,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1033–1039, 1998. View at Scopus
  2. A. G. Jongepier and L. van der Sluis, “Adaptive distance protection of a double-circuit line,” IEEE Transactions on Power Delivery, vol. 9, no. 3, pp. 1289–1297, 1994. View at Publisher · View at Google Scholar
  3. V. S. S. Vankayala and N. D. Rao, “Artificial neural networks and their applications to power systems—a bibliographical survey,” Electric Power Systems Research, vol. 28, no. 1, pp. 67–79, 1993. View at Scopus
  4. S. A. Khaparde, N. Warke, and S. H. Agarwal, “An adaptive approach in distance protection using an artificial neural network,” Electric Power Systems Research, vol. 37, no. 1, pp. 39–44, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. D. V. Coury and D. C. Jorge, “Artificial neural network approach to distance protection of transmission lines,” IEEE Transactions on Power Delivery, vol. 13, no. 1, pp. 102–108, 1998. View at Scopus
  6. M. Sanaye-Pasand and O. P. Malik, “High speed transmission system directional protection using an Elman network,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1040–1045, 1998. View at Scopus
  7. M. Sanaye-Pasand and H. Khorashadi-Zadeh, “Transmission line fault detection & phase selection using ANN,” in Proceedings of the International Conference on Power Systems Transients (IPST'03), pp. 1–5, New Orleans, La, USA, 2003.
  8. M. Sanaye-Pasand and H. Khorashadi-Zadeh, “An extended ANN-based high speed accurate distance protection algorithm,” International Journal of Electrical Power and Energy Systems, vol. 28, no. 6, pp. 387–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Mazon, I. Zamora, J. F. Miñambres, M. A. Zorrozua, J. J. Barandiaran, and K. Sagastabeitia, “New approach to fault location in two-terminal transmission lines using artificial neural networks,” Electric Power Systems Research, vol. 56, no. 3, pp. 261–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Venkatesan and B. Balamurugan, “A real-time hardware fault detector using an artificial neural network for distance protection,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 75–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. P. K. Dash, A. K. Pradhan, and G. Panda, “Application of minimal radial basis function neural network to distance protection,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 68–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. W. M. Lin, C. D. Yang, J. H. Lin, and M. T. Tsay, “A fault classification method by RBF neural network with OLS learning procedure,” IEEE Transactions on Power Delivery, vol. 16, no. 4, pp. 473–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. N. Mahanty and P. B. D. Gupta, “Application of RBF neural network to fault classification and location in transmission lines,” IEE Proceedings: Generation, Transmission and Distribution, vol. 151, no. 2, pp. 201–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Bouthiba, “Fault location in EHV transmission lines using artificial neural networks,” International Journal of Applied Mathematics and Computer Science, vol. 14, no. 1, pp. 69–78, 2004. View at Publisher · View at Google Scholar
  15. S. R. Samantaray, P. K. Dash, and G. Panda, “Fault classification and location using HS-transform and radial basis function neural network,” Electric Power Systems Research, vol. 76, no. 9-10, pp. 897–905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Wang and W. W. L. Keerthipala, “Fuzzy-neuro approach to fault classification for transmission line protection,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1093–1104, 1998. View at Scopus
  17. T. Dalstein and B. Kulicke, “Neural network approach to fault classification for high speed protective relaying,” IEEE Transactions on Power Delivery, vol. 10, no. 2, pp. 1002–1011, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Y. Xuan, R. K. Aggarwal, A. T. Johns, R. W. Dunn, and A. Bennett, “A neural network based protection technique for combined 275 kV/400 kV double circuit transmission lines,” Neurocomputing, vol. 23, no. 1–3, pp. 59–70, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Aggarwal, Q. Y. Xuan, R. W. Dunn, A. T. Johns, and A. Bennett, “A novel fault classification technique for double-circuit lines based on a combined unsupervised/supervised neural network,” IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1250–1256, 1999. View at Scopus
  20. G. K. Purushothama, A. U. Narendranath, D. Thukaram, and K. Parthasarathy, “ANN applications in fault locators,” International Journal of Electrical Power and Energy Systems, vol. 23, no. 6, pp. 491–506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Skok, A. Marusic, S. Tesnjak, and L. Pevik, “Double-circuit line adaptive protection based on Kohonen neural network considering different operation and switching modes,” in Proceedings of the Power Engineering 2002 Large Engineering Systems Conference on LESCOPE, vol. 2, pp. 153–157, 2002.
  22. L. S. Martins, J. F. Martins, V. F. Pires, and C. M. Alegria, “A neural space vector fault location for parallel double-circuit distribution lines,” International Journal of Electrical Power and Energy Systems, vol. 27, no. 3, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. R. Bhalja and R. P. Maheshwari, “High-resistance faults on two terminal parallel transmission line: analysis, simulation studies, and an adaptive distance relaying scheme,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 801–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox User’s Guide, Revised for Version 6.0.4, MathWorks, Natick, Mass, USA, 2010.
  25. A. Jain, A. S. Thoke, and R. N. Patel, “Double circuit transmission line fault distance location using artificial neural network,” in Proceedings of the World Congress on Nature and Biologically Inspired Computing (NABIC'09), pp. 13–18, Coimbatore, India, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Jain, A. S. Thoke, E. Koley, and R. N. Patel, “Double phase to ground fault classification and fault distance location of double circuit transmission lines using ANN,” in Proceedings of the 18th IEEE Bangalore Section Annual Symposium on Emerging Needs of Computing, Communication, Signals and Power, paper no. ENCCSP-177, August 2009.
  27. A. Jain, A. S. Thoke, E. Koley, and R. N. Patel, “Fault classification and fault distance location of double circuit transmission lines for phase to phase faults using only one terminal data,” in Proceedings of the International Conference on Power Systems (ICPS'09), paper no. 41, pp. 1–6, Kharagpur, India, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Jain, A. S. Thoke, and R. N. Patel, “Symmetrical fault detection, classification and distance location of double circuit transmission line using ANN,” CSVTU Research Journal. In press.
  29. M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Jain, A. S. Thoke, P. K. Modi, and R. N. Patel, “Classification and location of single line to ground faults in double circuit transmission lines using artificial neural networks,” International Journal of Power and Energy Conversion, vol. 2, no. 2, pp. 109–225, 2010. View at Publisher · View at Google Scholar