About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Intelligence
Volume 2013 (2013), Article ID 316985, 8 pages
http://dx.doi.org/10.1155/2013/316985
Research Article

Artificial-Intelligence-Based Techniques to Evaluate Switching Overvoltages during Power System Restoration

1Department of Electrical Engineering, Islamic Azad University, Najafabad Branch, Najafabad 85141-43131, Iran
2Department of Electrical Engineering, University of Kashan, Kashan 87317-51167, Iran
3Grenoble Electrical Engineering Lab (G2ELab), Grenoble INP, BP46, 38402 Saint Martin d’Hères Cedex, France

Received 19 May 2012; Revised 31 July 2012; Accepted 23 October 2012

Academic Editor: Richard Mitchell

Copyright © 2013 Iman Sadeghkhani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Adibi, R. W. Alexander, and B. Avramovic, “Overvoltage control during restoration,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1464–1470, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ketabi, A. M. Ranjbar, and R. Feuillet, “Analysis and control of temporary overvoltages for automated restoration planning,” IEEE Transactions on Power Delivery, vol. 17, no. 4, pp. 1121–1127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. A. Taher and I. Sadeghkhani, “Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration,” Simulation Modelling Practice and Theory, vol. 18, no. 6, pp. 787–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ketabi, I. Sadeghkhani, and R. Feuillet, “Using artificial neural network to analyze harmonic overvoltages during power system restoration,” European Transactions on Electrical Power, vol. 21, no. 7, pp. 1941–1953, 2011.
  5. G. Morin, “Service restoration following a major failure on the hydro-quebec power system,” IEEE Transactions on Power Delivery, vol. 2, no. 2, pp. 454–463, 1987. View at Scopus
  6. A. Ketabi, I. Sadeghkhani, and R. Feuillet, “Using artificial neural network to analyze harmonic overvoltages during power system restoration,” European Transactions on Electrical Power, vol. 21, no. 7, pp. 1941–1953, 2011.
  7. D. Thukaram, H. P. Khincha, and S. Khandelwal, “Estimation of switching transient peak overvoltages during transmission line energization using artificial neural network,” Electric Power Systems Research, vol. 76, no. 4, pp. 259–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Sadeghkhani, A. Ketabi, and R. Feuillet, “Radial basis function neural network application to power system restoration studies,” Computational Intelligence and Neuroscience, vol. 2012, Article ID 654895, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Sybille, P. Brunelle, L. Hoang, L. A. Dessaint, and K. Al-Haddad, “Theory and applications of power system blockset, a MATLAB/Simulink-based simulation tool for power systems,” in Proceedings of IEEE Power Engineering Society Winter Meeting, pp. 774–779, 2000.
  10. A. Ketabi and I. Sadeghkhani, Electric Power Systems Simulation Using MATLAB, Morsal Publications, 2011.
  11. M. M. Duró, “Damping modelling in transformer energization studies for system restoration: some standard models compared to field measurements,” in Proceedings of IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future, Bucharest, Romania, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Sybille, M. M. Gavrilovic, J. Belanger, and V. Q. Do, “Transformer saturation effects on EHV system overvoltages,” IEEE Transactions on Power Apparatus and Systems, vol. 104, no. 3, pp. 671–680, 1985. View at Scopus
  13. M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Karami and M. S. Mohammadi, “Radial basis function neural network for power system load-flow,” International Journal of Electrical Power and Energy Systems, vol. 30, no. 1, pp. 60–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Prikler, G. Bán, and G. Bánfai, “EMTP models for simulation of shunt reactor switching transients,” International Journal of Electrical Power and Energy Systems, vol. 19, no. 4, pp. 235–240, 1997. View at Scopus
  16. I. Sadeghkhani, A. Ketabi, and R. Feuillet, “Radial basis function neural network application to measurement and control of shunt reactor overvoltages based on analytical rules,” Mathematical Problems in Engineering, vol. 2012, Article ID 647305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Keokhoungning, S. Premrudeepreechacharn, and K. Ngamsanroaj, “Evaluation of switching overvoltage in 500 kV transmission line interconnection Nam Theun 2 power plant to Roi Et 2 substation,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '09), March 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Wunderlich, M. M. Adibi, R. Fischl, and C. O. D. Nwankpa, “Approach to standing phase angle reduction,” IEEE Transactions on Power Systems, vol. 9, no. 1, pp. 470–478, 1994. View at Publisher · View at Google Scholar · View at Scopus