Advances in Andrology http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Role of Membrane Lipid Fatty Acids in Sperm Cryopreservation Tue, 18 Nov 2014 09:26:51 +0000 http://www.hindawi.com/journals/aandrol/2014/190542/ Lipid is an important constituent of cell membrane. Membrane lipid composition of spermatozoa has been correlated to different function. Many researchers have related membrane lipid with survival success after cryopreservation or cold shock. Sperm maturation and acrosome reactions are natural phenomenon, but cryopreservation or cold shock is not. Therefore, sperm cells are not programmed for such change and undergo stress. So the change in membrane lipid composition due to cold shock or cryopreservation may be looked upon as response of spermatozoa to a certain stressed condition. A significant body of research worked on the relationship between membrane lipid and fatty acid composition and ability of cell to tolerate adverse change in temperature. However, as the approach of different research groups was different, it is very difficult to compare the changes. Studies have been done with different species, ejaculated/seminal or epididymal sperm. Lipid analyses have been done with whole cell membrane isolated by different methods. Fatty acids estimated were from whole cell, plasma membrane, head membrane, or phospholipids. The cryopreservation condition, media composition, and diluents/cryoprotectants were also different. At this onset a comprehensive review is needed to cover changes of sperm membrane lipid composition of different species under different cryopreservation conditions. Rajes Mandal, Damodar Badyakar, and Jitamanyu Chakrabarty Copyright © 2014 Rajes Mandal et al. All rights reserved. A Personal Reflection of Greenlight 532 nm Laser for BPH Treatment Thu, 18 Sep 2014 05:39:14 +0000 http://www.hindawi.com/journals/aandrol/2014/207901/ Lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia are a bothersome symptom set that affect approximately one in every four males above the age of 50. First line treatment is typically medication, but when medications fail surgical therapy is the next option. Technological advances have made surgical therapy safer and more effective. One area that our group has particular interest and focus in is the application of the 532 nm laser in surgical therapy. The high power 532 nm laser is used to remove obstructive prostatic tissue and the laser energy is selectively absorbed by hemoglobin in the prostate tissue, resulting in effective tissue vaporization and removal. We review our experience with Greenlight laser system and its evolution from the original 60-watt laser to the most recent 180-watt Greenlight system with MoXy fiber. Bilal Chughtai, Claire Dunphy, and Alexis Te Copyright © 2014 Bilal Chughtai et al. All rights reserved. The Enzymatic Antioxidant System of Human Spermatozoa Thu, 10 Jul 2014 07:07:24 +0000 http://www.hindawi.com/journals/aandrol/2014/626374/ The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS) generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases) working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione) to guarantee normal sperm function. Cristian O’Flaherty Copyright © 2014 Cristian O’Flaherty. All rights reserved. Chlamydial Infection and Its Role in Male Infertility Sun, 01 Jun 2014 05:44:23 +0000 http://www.hindawi.com/journals/aandrol/2014/307950/ Introduction. Chlamydia trachomatis is an established cause of tubal factor infertility; however its role in male fertility is not as clear. We sought to determine the prevalence of Chlamydia in infertile men and evaluate its impact on male reproductive potential. Materials and Methods. We compared the incidence of Chlamydia in our infertile male population with that reported in the literature. We then reviewed the impact of Chlamydia infection on male fertility. Results. The incidence of Chlamydia infection in our population of infertile men was 0.3%. There is considerable variability in the reported incidence, likely due to variation in the population studied, and detection technique. The optimal testing method and sample are presently unclear. The effect of Chlamydia on male reproductive function is also variable in the literature, but appears to be relatively minimal and may be related primarily to sperm DNA fragmentation or female partner transmission. Conclusions. The prevalence of Chlamydia in the infertile male population is low and routine testing is not supported by the literature. For high-risk infertile men, nucleic acid testing of urine +/− semen is the most sensitive method to detect Chlamydia. A validated testing system for semen needs to be developed, so that a standardized methodology can be recommended. In this way the full implications of Chlamydia on male fertility can be elucidated. Mary K. Samplaski, Trustin Domes, and Keith A. Jarvi Copyright © 2014 Mary K. Samplaski et al. All rights reserved. Functional Importance of 1α,25(OH)2-Vitamin D3 and the Identification of Its Nongenomic and Genomic Signaling Pathways in the Testis Thu, 29 May 2014 06:26:22 +0000 http://www.hindawi.com/journals/aandrol/2014/808906/ The 1α,25(OH)2-vitamin D3 (1,25-D3) is known by its classic effects on Ca2+ metabolism and regulation of cellular proliferation and differentiation. The hormone 1,25-D3 acts in the testis through nongenomic and genomic events being implicated in the success of spermatogenesis in rats and in human being. The aim of this review was to highlight the effect and intracellular pathways of 1,25-D3 to modulate the spermatogenesis. The pivotal role of 1,25-D3 in male reproduction is reinforced by the presence of VDR and 1α-hydroxylase in reproductive tract. Also, the marked expression of VDR and the VD metabolizing enzymes in human testis, ejaculatory tract, and mature spermatozoa implicates the 1,25-D3 in spermatogenesis and maturation of human spermatozoa. Among genomic events, 1,25-D3 influences the expression of calcium binding protein and stimulates aromatase gene expression through a nongenomic activation of the membrane-bound VDR receptor involving the PKA pathway in the testis. Also, 1,25-D3 stimulates amino acid transport and exocytosis in testis by nongenomic events coupled to ionic currents triggered at plasma membrane. All together, the demonstration that 1,25-D3 regulates both Sertoli cell and sperm function may be useful for the study and development of new therapeutic strategies for the male reproductive disorders. Fátima Regina Mena Barreto Silva Copyright © 2014 Fátima Regina Mena Barreto Silva. All rights reserved. Looking beyond Androgen Receptor Signaling in the Treatment of Advanced Prostate Cancer Thu, 10 Apr 2014 13:56:36 +0000 http://www.hindawi.com/journals/aandrol/2014/748352/ This review will provide a description of recent efforts in our laboratory contributing to a general goal of identifying critical determinants of prostate cancer growth in both androgen-dependent and -independent contexts. Important outcomes to date have indicated that the sustained activation of AR transcriptional activity in castration-resistant prostate cancer (CRPC) cells results in a gene expression profile separate from the androgen-responsive profile of androgen-dependent prostate cancer (ADPC) cells. Contributing to this reprogramming is enhanced FoxA1 recruitment of AR to G2/M phase target gene loci and the enhanced chromatin looping of CRPC-specific gene regulatory elements facilitated by PI3K/Akt-phosphorylated MED1. We have also observed a role for FoxA1 beyond AR signaling in driving G1/S phase cell cycle progression that relies on interactions with novel collaborators MYBL2 and CREB1. Finally, we describe an in-depth mechanism of GATA2-mediated androgen-responsive gene expression in both ADPC and CRPC cells. Altogether these efforts provide evidence to support the development of novel prostate cancer therapeutics that address downstream targets of AR activity as well as AR-independent drivers of disease-relevant transcription programs. Benjamin Sunkel and Qianben Wang Copyright © 2014 Benjamin Sunkel and Qianben Wang. All rights reserved. Advances in Stem Cell Therapy for Erectile Dysfunction Wed, 12 Mar 2014 08:06:30 +0000 http://www.hindawi.com/journals/aandrol/2014/140618/ Stem cell (SC) therapy for erectile dysfunction (ED) has been investigated in 35 published studies, with one being a small-scale clinical trial. Out of these 35 studies, 19 are concerned with cavernous nerve (CN) injury-associated ED while 10 with diabetes mellitus- (DM-) associated ED. Adipose-derived SCs (ADSCs) were employed in 18 studies while bone marrow SCs (BMSCs) in 9. Transplantation of SCs was done mostly by intracavernous (IC) injection, as seen in 25 studies. Allogeneic and xenogeneic transplantations have increasingly been performed but their immune-incompatibility issues were rarely discussed. More recent studies also tend to use combinatory therapies by modifying or supplementing SCs with angiogenic or neurotrophic genes or proteins. All studies reported better erectile function with SC transplantation, and the majority also reported improved muscle, endothelium, and/or nerve in the erectile tissue. However, differentiation or engraftment of transplanted SCs has rarely been observed; thus, paracrine action is generally believed to be responsible for SC’s therapeutic effects. But still, few studies actually investigated and none proved paracrine action as a therapeutic mechanism. Thus, based exclusively on functional outcome data shown in preclinical studies, two clinical trials are currently recruiting patients for treatment with IC injection of ADSC and BMSC, respectively. Ching-Shwun Lin Copyright © 2014 Ching-Shwun Lin. All rights reserved.