About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Neural Systems
Volume 2012 (2012), Article ID 808602, 10 pages
http://dx.doi.org/10.1155/2012/808602
Research Article

Evaluation of a Nonrigid Motion Compensation Technique Based on Spatiotemporal Features for Small Lesion Detection in Breast MRI

1Department of Computer Science, Technical University of Munich, 85748 Garching, Germany
2Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
3Institute for Clinical Radiology, University of Munich, 81679 Munich, Germany

Received 17 March 2012; Accepted 21 May 2012

Academic Editor: Olivier Bastien

Copyright © 2012 F. Steinbruecker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Orel, M. D. Schnall, C. M. Powell et al., “Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy,” Radiology, vol. 196, no. 1, pp. 115–122, 1995. View at Scopus
  2. B. Szabó, P. Aspelin, M. Wiberg, and B. Bone, “Dynamic mr imaging of the breast—analysis of kinetic and morphologic diagnsotic criteria,” Acta Radiologica, vol. 44, no. 4, pp. 379–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. Schouten van der Velden, C. Boetes, P. Bult, and T. Wobbes, “Variability in the description of morphologic and contrast enhancement characteristics of breast lesions on magnetic resonance imaging,” The American Journal of Surgery, vol. 192, no. 2, pp. 172–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. M. Grimsby, R. Gray, A. Dueck et al., “Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging?” The American Journal of Surgery, vol. 198, no. 4, pp. 500–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Behrens, H. Laue, T. Boehler, B. Kuemmerlen, H. Hahn, and H. O. Peitgen, “Computer assistance for MR based diagnosis of breast cancer: present and future challenges,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 236–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Hill, A. Mehnert, S. Crozier, and K. McMahon, “Evaluating the accuracy and impact of registration in dynamic contrast-enhanced breast MRI,” Concepts in Magnetic Resonance B, vol. 35, no. 2, pp. 106–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. R. Crum, C. Tanner, and D. J. Hawkes, “Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging,” Physics in Medicine and Biology, vol. 50, no. 21, pp. 5153–5174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. Jacobs, “Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint,” IEEE Transactions on Medical Imaging, vol. 22, no. 6, pp. 730–741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes, “Nonrigid registration using free-form deformations: application to breast mr images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999. View at Scopus
  10. R. Lucht, S. Delorme, J. Heiss et al., “Classification of signal-time curves obtained by dynamic magnetic resonance mammography: statistical comparison of quantitative methods,” Investigative Radiology, vol. 40, no. 7, pp. 442–447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Y. Chu, H. M. Chen, C. Y. Hsieh et al., “Adaptive grid generation based non-rigid image registration using mutual information for breast MRI,” Journal of Signal Processing Systems, vol. 54, no. 1–3, pp. 45–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1–3, pp. 185–203, 1981. View at Scopus
  13. K. H. Herrmann, S. Wurdinger, D. R. Fischer et al., “Application and assessment of a robust elastic motion correction algorithm to dynamic MRI,” European Radiology, vol. 17, no. 1, pp. 259–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, “Highly accurate optic flow computation with theoretically justified warping,” International Journal of Computer Vision, vol. 67, no. 2, pp. 141–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 1998.
  16. D. Xu and H. Li, “Geometric moment invariants,” Pattern Recognition, vol. 41, no. 1, pp. 240–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Jamitzky, R. W. Stark, W. Bunk et al., “Scaling-index method as an image processing tool in scanning-probe microscopy,” Ultramicroscopy, vol. 86, no. 1-2, pp. 241–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. W. A. Kaiser, Signs in MR Mammography, Springer, 2008.
  19. A. Penn, S. Thompson, C. Lehman et al., “Morphologic blooming in breast mri as a characterization of margin for discriminating benign from malignant lesions,” Academic Radiology, vol. 13, no. 11, pp. 1344–1354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Schwarz-Boeger, M. Mueller, G. Schimpfle, et al., “Moco—comparison of two different algorithms for motion correction in breast mri,” Onkologie, vol. 31, no. 2, pp. 141–158, 2008.