About this Journal Submit a Manuscript Table of Contents
Advances in Artificial Neural Systems
Volume 2012 (2012), Article ID 919281, 8 pages
http://dx.doi.org/10.1155/2012/919281
Research Article

Selection of Spatiotemporal Features in Breast MRI to Differentiate between Malignant and Benign Small Lesions Using Computer-Aided Diagnosis

1Department of Computer Science, Technical University of Munich, 8574 Garching, Germany
2Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120, USA
3Institute for Clinical Radiology, University of Munich, 81377 Munich, Germany
4Department of Electrical and Computer Engineering, FAMU/FSU College of Engineering, Tallahassee, FL 32310-6046, USA

Received 29 February 2012; Accepted 14 May 2012

Academic Editor: Juan Manuel Gorriz Saez

Copyright © 2012 F. Steinbruecker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Orel, M. D. Schnall, C. M. Powell et al., “Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy,” Radiology, vol. 196, no. 1, pp. 115–122, 1995. View at Scopus
  2. C. K. Kuhl, P. Mielcareck, S. Klaschik et al., “Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?” Radiology, vol. 211, no. 1, pp. 101–110, 1999. View at Scopus
  3. M. D. Schnall, S. Rosten, S. Englander, S. G. Orel, and L. W. Nunes, “A combined architectural and kinetic interpretation model for breast MR images,” Academic Radiology, vol. 8, no. 7, pp. 591–597, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. K. Szabó, P. Aspelin, M. Wiberg, and B. Bone, “Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria,” Acta Radiologica, vol. 44, no. 4, pp. 379–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Schouten van der Velden, C. Boetes, P. Bult, and T. Wobbes, “The value of magnetic resonance imaging in diagnosis and size assessment of in situ and small invasive breast carcinoma,” American Journal of Surgery, vol. 192, no. 2, pp. 172–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. M. Grimsby, R. Gray, A. Dueck et al., “Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging?” The American Journal of Surgery, vol. 198, no. 4, pp. 500–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Stoutjesdijk, J. J. Fütterer, C. Boetes, L. E. Van Die, G. Jager, and J. O. Barentsz, “Variability in the description of morphologic and contrast enhancement characteristics of breast lesions on magnetic resonance imaging,” Investigative Radiology, vol. 40, no. 6, pp. 355–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I. M. A. Obdeijn, C. E. Loo, A. J. Rijnsburger et al., “Assessment of false-negative cases of breast MR imaging in women with a familial or genetic predisposition,” Breast Cancer Research and Treatment, vol. 119, no. 2, pp. 399–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. D. Tourassi, R. Vargas-Voracek, D. M. Catarious, and C. E. Floyd, “Computer-assisted detection of mammographic masses: a template matching scheme based on mutual information,” Medical Physics, vol. 30, no. 8, pp. 2123–2130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. G. D. Tourassi, B. Harrawood, S. Singh, and J. Y. Lo, “Information-theoretic CAD system in mammography: entropy-based indexing for computational efficiency and robust performance,” Medical Physics, vol. 34, no. 8, pp. 3193–3204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. D. Tourassi, R. Ike, S. Singh, and B. Harrawood, “Evaluating the effect of image preprocessing on an information-theoretic CAD system in mammography,” Academic Radiology, vol. 15, no. 5, pp. 626–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Hadjiiski, B. Sahiner, and H. Chan, “Evaluating the effect of image preprocessing on an information-theoretic cad system in mammography.,” Current Opinion in Obstetrics and Gynecology, vol. 18, no. 7, pp. 64–70, 2006.
  13. M. A. Kupinski and M. L. Giger, “Automated seeded lesion segmentation on digital mammograms,” IEEE Transactions on Medical Imaging, vol. 17, no. 4, pp. 510–517, 1998. View at Scopus
  14. S. Behrens, H. Laue, M. Althaus et al., “Computer assistance for MR based diagnosis of breast cancer: present and future challenges,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 236–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hill, A. Mehnert, S. Crozier, and K. McMahon, “Evaluating the accuracy and impact of registration in dynamic contrast-enhanced breast MRI,” Concepts in Magnetic Resonance B, vol. 35, no. 2, pp. 106–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, “Highly accurate optic flow computation with theoretically justified warping,” International Journal of Computer Vision, vol. 67, no. 2, pp. 141–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Horn and B. Schunck, Determining optical flow, 1981.
  18. F. Steinbruecker, A. Meyer-Baese, A. Wismueller, and T. Schlossbauer, “Application and evaluation of motion compensation technique to breast mri,” in Proceedings of the Evolutionary and Bio-Inspired Computation: Theory and Applications III, vol. 7347 of Proceedings of SPIE, pp. 73470J–73470J-8, 2009. View at Publisher · View at Google Scholar
  19. D. Xu and H. Li, “Geometric moment invariants,” Pattern Recognition, vol. 41, no. 1, pp. 240–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Mademlis, A. Axenopoulos, P. Daras, D. Tzovaras, and M. G. Strintzis, “3D content-based search based on 3D Krawtchouk moments,” in Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT '06), pp. 743–749, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. T. Yap, R. Paramesran, and S. H. Ong, “Image analysis by Krawtchouk moments,” IEEE Transactions on Image Processing, vol. 12, no. 11, pp. 1367–1377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Jamitzky, R. W. Stark, W. Bunk et al., “Scaling-index method as an image processing tool in scanning-probe microscopy,” Ultramicroscopy, vol. 86, no. 1-2, pp. 241–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 1998.