About this Journal Submit a Manuscript Table of Contents
Advances in Bioinformatics
Volume 2010 (2010), Article ID 976792, 7 pages
http://dx.doi.org/10.1155/2010/976792
Research Article

Applying Small-Scale DNA Signatures as an Aid in Assembling Soybean Chromosome Sequences

USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA

Received 19 November 2009; Accepted 28 June 2010

Academic Editor: Izabela Makalowska

Copyright © 2010 Myron Peto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Schmutz, S. B. Cannon, J. Schlueter et al., “Genome sequence of the palaeopolyploid soybean,” Nature, vol. 463, no. 7278, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Jackson, D. Rokhsar, G. Stacey, R. C. Shoemaker, J. Schmutz, and J. Grimwood, “Toward a reference sequence of the soybean genome: a multiagency effort,” Crop Science, vol. 46, no. 1, pp. 55–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Hyten, S. B. Cannon, Q. Song et al., “High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence,” BMC Genomics, vol. 11, no. 1, article 38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Hyten, I.-Y. Choi, Q. Song et al., “A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping,” Crop Science, vol. 50, no. 3, pp. 960–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. K. Anderson, N. Salameh, H. W. Bass et al., “Integrating genetic linkage maps with pachytene chromosome structure in maize,” Genetics, vol. 166, no. 4, pp. 1923–1933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Tenaillon, M. C. Sawkins, L. K. Anderson, S. M. Stack, J. Doebley, and B. S. Gaut, “Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.),” Genetics, vol. 162, no. 3, pp. 1401–1413, 2002. View at Scopus
  7. W. Nelson and C. Soderlund, “Integrating sequence with FPC fingerprint maps,” Nucleic Acids Research, vol. 37, no. 5, article e36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Rice, L. Longden, and A. Bleasby, “EMBOSS: the European molecular biology open software suite,” Trends in Genetics, vol. 16, no. 6, pp. 276–277, 2000. View at Scopus
  9. N. Gill, S. Findley, J. G. Walling et al., “Molecular and chromosomal evidence for allopolyploidy in soybean,” Plant Physiology, vol. 151, no. 3, pp. 1167–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Batzoglou, D. B. Jaffe, K. Stanley et al., “ARACHNE: a whole-genome shotgun assembler,” Genome Research, vol. 12, no. 1, pp. 177–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kaul, H. L. Koo, J. Jenkins et al., “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana,” Nature, vol. 408, no. 6814, pp. 796–815, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. International Rice Genome Sequencing Project, “The map-based sequence of the rice genome,” Nature, vol. 436, no. 7052, pp. 793–800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Tuskan, S. DiFazio, S. Jansson et al., “The genome of black cottonwood, Populus trichocarpa (Torr. & Gray),” Science, vol. 313, no. 5793, pp. 1596–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Karlin and C. Burge, “Dinucleotide relative abundance extremes: a genomic signature,” Trends in Genetics, vol. 11, no. 7, pp. 283–290, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Burge, A. M. Campbell, and S. Karlin, “Over- and under-representation of short oligonucleotides in DNA sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 4, pp. 1358–1362, 1992. View at Scopus
  16. A. J. Gentles and S. Karlin, “Genome-scale compositional comparisons in Eukaryotes,” Genome Research, vol. 11, no. 4, pp. 540–546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Karlin, L. Brocchieri, J. Trent, B. E. Blaisdell, and J. Mrázek, “Heterogeneity of genome and proteome content in bacteria, archaea, and eukaryotes,” Theoretical Population Biology, vol. 61, no. 4, pp. 367–390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Josse, A. D. Kaiser, and A. Kornberg, “Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid,” Journal of Biological Chemistry, vol. 236, pp. 864–875, 1961.
  19. A. Campbell, J. Mrázek, and S. Karlin, “Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9184–9189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Karlin and I. Ladunga, “Comparisons of eukaryotic genomic sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12832–12836, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Karlin and J. Mrázek, “Compositional differences within and between eukaryotic genomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10227–10232, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. W. J. van Passel, E. E. Kuramae, A. C. M. Luyf, A. Bart, and T. Boekhout, “The reach of the genome signature in prokaryotes,” BMC Evolutionary Biology, vol. 6, article 84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Collyn, L. Guy, M. Marceau, M. Simonet, and C.-A. H. Roten, “Describing ancient horizontal gene transfers at the nucleotide and gene levels by comparative pathogenicity island genometrics,” Bioinformatics, vol. 22, no. 9, pp. 1072–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Fertil, M. Massin, S. Lespinats, C. Devic, P. Dumee, and A. Giron, “GENSTYLE: exploration and analysis of DNA sequences with genomic signature,” Nucleic Acids Research, vol. 33, no. 2, pp. W512–W515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Karlin, “Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes,” Trends in Microbiology, vol. 9, no. 7, pp. 335–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Paz, V. Kirzhner, E. Nevo, and A. Korol, “Coevolution of DNA-interacting proteins and genome "dialect",” Molecular Biology and Evolution, vol. 23, no. 1, pp. 56–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Karlin, J. Mrázek, and A. M. Campbell, “Compositional biases of bacterial genomes and evolutionary implications,” Journal of Bacteriology, vol. 179, no. 12, pp. 3899–3913, 1997. View at Scopus
  28. J. Du, Z. Tian, C. S. Hans, et al., “Evolutionary conservation, diversity and specificity of LTR retrotransposons in flowering plants: new insights from genome-wide analysis and multi-specific comparison,” The Plant Journal, vol. 63, no. 4, pp. 584–598, 2010.
  29. W. Li and P. Miramontes, “Large-scale oscillation of structure-related DNA sequence features in human chromosome 21,” Physical Review E, vol. 74, no. 2, part 1, Article ID 021912, 2006. View at Scopus
  30. O. Jaillon, J.-M. Aury, B. Noel et al., “The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla,” Nature, vol. 449, no. 7161, pp. 463–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Karlin and L. R. Cardon, “Computational DNA sequence analysis,” Annual Review of Microbiology, vol. 48, pp. 619–654, 1994. View at Scopus
  32. C. J. Benham and C. Bi, “The analysis of stress-induced duplex destabilization in long genomic DNA sequences,” Journal of Computational Biology, vol. 11, no. 4, pp. 519–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Yeramian, S. Bonnefoy, and G. Langsley, “Physics-based gene identification: proof of concept for plasmodium falciparum,” Bioinformatics, vol. 18, no. 1, pp. 190–193, 2002. View at Scopus
  34. E. Yeramian and L. Jones, “GeneFizz: a web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives,” Nucleic Acids Research, vol. 31, no. 13, pp. 3843–3849, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. Breslauer, R. Frank, H. Blocker, and L. A. Marky, “Predicting DNA duplex stability from the base sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 11, pp. 3746–3750, 1986. View at Scopus
  36. R. Gonzalez, Y. Zeng, V. Ivanov, and G. Zocchi, “Bubbles in DNA melting,” Journal of Physics Condensed Matter, vol. 21, no. 3, Article ID 034102, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. W. A. Kibbe, “OligoCalc: an online oligonucleotide properties calculator,” Nucleic Acids Research, vol. 35, pp. W43–W46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. SantaLucia Jr., “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1460–1465, 1998. View at Scopus