About this Journal Submit a Manuscript Table of Contents
Advances in Bioinformatics
Volume 2011 (2011), Article ID 506583, 15 pages
http://dx.doi.org/10.1155/2011/506583
Research Article

Predicting Flavonoid UGT Regioselectivity

1Technology Division, Momentx Corporation, Plano, TX 75024-3106, USA
2Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, USA
3Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
4Department of Computer and Information Sciences, East Tennessee State University, Johnson City, TN 37614, USA

Received 15 September 2010; Revised 6 March 2011; Accepted 18 April 2011

Academic Editor: Alvis Brazma

Copyright © 2011 Rhydon Jackson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Rini and N. Sharon, “Glycosyltransferases, sugar nucleotide transporters and bacterial surface lectins-at the cutting edge of glycobiology,” Current Opinion in Structural Biology, vol. 10, no. 5, pp. 507–509, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Davies, “Sweet secrets of synthesis,” Nature Structural Biology, vol. 8, no. 2, pp. 98–100, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. T. Vogt and P. Jones, “Glycosyltransferases in plant-natural product synthesis: characterization of a supergene family,” Trends in Plant Science, vol. 5, no. 9, pp. 380–386, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Osmani, S. Bak, and B. L. Møller, “Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling,” Phytochemistry, vol. 70, no. 3, pp. 325–347, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. X. Z. He, W. S. Li, J. W. Blount, and R. A. Dixon, “Regioselective synthesis of plant (iso) flavone glycosides in Escherichia coli,” Applied Microbiology and Biotechnology, vol. 80, no. 2, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos, “Biotechnology of flavonoids and other phenylpropanoid-derived natural products—part II: reconstruction of multienzyme pathways in plants and microbes,” Biotechnology Journal, vol. 2, no. 10, pp. 1235–1249, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. R. J. Williams, J. P. E. Spencer, and C. Rice-Evans, “Flavonoids: antioxidants or signalling molecules?” Free Radical Biology and Medicine, vol. 36, no. 7, pp. 838–849, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. M. M. Gachon, M. Langlois-Meurinne, and P. Saindrenan, “Plant secondary metabolism glycosyltransferases: the emerging functional analysis,” Trends in Plant Science, vol. 10, no. 11, pp. 542–549, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. W. J. Broughton, F. Zhang, X. Perret, and C. Staehelin, “Signals exchanged between legumes and rhizobiumml: agricultural uses and perspectives,” Plant and Soil, vol. 252, no. 1, pp. 129–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. J. Shaw, P. Morris, and J. E. Hooker, “Perception and modification of plant avonoid signals by rhizosphere microorganisms,” Environmental Microbiology, vol. 8, no. 11, pp. 1867–1880, 2006.
  11. D. T. Britto and H. J. Kronzucker, “Bioengineering nitrogen acquisition in rice: can novel initiatives in rice genomics and physiology contribute to global food security?” BioEssays, vol. 26, no. 6, pp. 683–692, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. F. DairOlio, “Protein glycosylation in cancer biology: an overview,” Journal of Clinical Pathology, vol. 49, no. 3, pp. M126–M135, 1996. View at Scopus
  13. S. Elliott, T. Lorenzini, S. Asher et al., “Enhancement of therapeutic protein in vivo activities through glycoengineering,” Nature Biotechnology, vol. 21, no. 4, pp. 414–421, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. R. J. Solá, J. A. Rodríguez-Martínez, and K. Griebenow, “Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications,” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2133–2152, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. K. Lim, “Plant glycosyltransferases: their potential as novel biocatalysts,” Chemistry, vol. 11, no. 19, pp. 5486–5494, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. D. Bowles, E. K. Lim, B. Poppenberger, and F. E. Vaistij, “Glycosyltransferases of lipophilic small molecules,” Annual Review of Plant Biology, vol. 57, pp. 567–597, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. W. Offen, C. Martinez-Fleites, M. Yang et al., “Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification,” EMBO Journal, vol. 25, no. 6, pp. 1396–1405, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. C. Breton, L. Šnajdrová, C. Jeanneau, J. Koča, and A. Imberty, “Structures and mechanisms of glycosyltransferases,” Glycobiology, vol. 16, no. 2, pp. 29–37, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. K. Owens and C. A. McIntosh, “Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi,” Phytochemistry, vol. 70, no. 11-12, pp. 1382–1391, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. H. Shao, X. He, L. Achnine, J. W. Blount, R. A. Dixon, and X. Wang, “Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula,” Plant Cell, vol. 17, no. 11, pp. 3141–3154, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. L. Li, L. V. Modolo, L. L. Escamilla-Trevino, L. Achnine, R. A. Dixon, and X. Wang, “Crystal structure of Medicago truncatula UGT85H2—insights into the structural basis of a multifunctional (Iso) flavonoid glycosyltransferase,” Journal of Molecular Biology, vol. 370, no. 5, pp. 951–963, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. X. Z. He, X. Wang, and R. A. Dixon, “Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (Iso)flavonoid glycosylation,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34441–34447, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. P. Brown, N. Krishnamurthy, and K. Sjölander, “Automated protein subfamily identification and classification,” PLoS Computational Biology, vol. 3, no. 8, article e160, pp. 1526–1538, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. Karchin, K. Karplus, and D. Haussler, “Classifying G-protein coupled receptors with support vector machines,” Bioinformatics, vol. 18, no. 1, pp. 147–159, 2002. View at Scopus
  25. D. Knisley, E. Seier, D. Lamb, D. Owens, and C. McIntosh, “A graph theoretic model based on primary and predicted secondary structure reveals functional specificity in a set of plant secondary product UDP glucosyltransferases,” in Proceedings of the International Conference on Bioinformatics, Computational Biology, Genomics and Chemoinformatics, W. Loging, M. Doble, Z. Sun, and J. Malone, Eds., 2009.
  26. A. R. Jackson, Predicting flavonoid UGT regioselectivity with graphical residue models and machine learning, M.S. thesis, East Tennessee State University, 2009, http://etd-submit.etsu.edu/etd/theses/available/etd-1115109-141636/unrestricted/JacksonA112109a.pdf.
  27. A. R. Lo Piero, I. Puglisi, P. Rapisarda, and G. Petrone, “Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage,” Journal of Agricultural and Food Chemistry, vol. 53, no. 23, pp. 9083–9088, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. Ogata, Y. Kanno, Y. Itoh, H. Tsugawa, and M. Suzuki, “Plant biochemistry: anthocyanin biosynthesis in roses,” Nature, vol. 435, no. 7043, pp. 757–758, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Yoshihara, T. Imayama, M. Fukuchi-Mizutani et al., “cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Iris hollandica,” Plant Science, vol. 169, no. 3, pp. 496–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Ogata, Y. Itoh, M. Ishida, H. Yoshida, and Y. Ozeki, “Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus,” Plant Biotechnology, vol. 21, no. 5, pp. 367–375, 2004.
  31. Y. Tanaka, K. Yonekura, M. Fukuchi-Mizutani, et al., “Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triora,” Plant and Cell Physiology, vol. 37, no. 5, pp. 711–716, 1996.
  32. M. Kita, Y. Hirata, T. Moriguchi et al., “Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus,” FEBS Letters, vol. 469, no. 2-3, pp. 173–178, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Vogt, R. Grimm, and D. Strack, “Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae,” Plant Journal, vol. 19, no. 5, pp. 509–519, 1999. View at Publisher · View at Google Scholar
  34. M. Hirotani, R. Kuroda, H. Suzuki, and T. Yoshikawa, “Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis,” Planta, vol. 210, no. 6, pp. 1006–1013, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Yamazaki, Z. Gong, M. Fukuchi-Mizutani et al., “Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin,” Journal of Biological Chemistry, vol. 274, no. 11, pp. 7405–7411, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Kim, B. G. Kim, Y. Park et al., “Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 6, pp. 1471–1477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Isayenkova, V. Wray, M. Nimtz, D. Strack, and T. Vogt, “Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris,” Phytochemistry, vol. 67, no. 15, pp. 1598–1612, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Fukuchi-Mizutani, H. Okuhara, Y. Fukui et al., “Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian,” Plant Physiology, vol. 132, no. 3, pp. 1652–1663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Noguchi, A. Saito, Y. Homma et al., “A UDP-glucose: Isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis,” Journal of Biological Chemistry, vol. 282, no. 32, pp. 23581–23590, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. G. Taguchi, T. Ubukata, N. Hayashida, H. Yamamoto, and M. Okazaki, “Cloning and characterization of a glucosyltransferase that reacts on 7-hydroxyl group of flavonol and 3-hydroxyl group of coumarin from tobacco cells,” Archives of Biochemistry and Biophysics, vol. 420, no. 1, pp. 95–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. H. Byoung, H. K. Jeong, Y. K. Na, B. G. Kim, Y. Chong, and J. H. Ahn, “Characterization of uridine-diphosphate dependent flavonoid glucosyltransferase from Oryza sativa,” Journal of Biochemistry and Molecular Biology, vol. 40, no. 6, pp. 870–874, 2007. View at Scopus
  42. M. Yamazaki, E. Yamagishi, Z. Gong et al., “Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression,” Plant Molecular Biology, vol. 48, no. 4, pp. 401–411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Ververidis, E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos, “Biotechnology of flavonoids and other phenylpropanoid-derived natural products—part I: chemical diversity, impacts on plant biology and human health,” Biotechnology Journal, vol. 2, no. 10, pp. 1214–1234, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. J. Devillers and A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPAR, CRC, 1st edition, 2000.
  45. S. Vishveshwara, K. V. Brinda, and N. Kannan, “Protein structure: insights from graph theory,” Journal of Theoretical and Computational Chemistry, vol. 1, no. 1, pp. 187–212, 2002.
  46. T. Haynes, D. Knisley, E. Seier, and Y. Zou, “A quantitative analysis of secondary RNA structure using domination based parameters on trees,” BMC Bioinformatics, vol. 7, no. 1, article 108, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. I. McDonald and J. M. Thornton, “Atlas of side-chain and main-chain hydrogen bonding,” 1994, http://www.biochem.ucl.ac.uk/bsm/atlas/index.html.
  48. B. Bulka, M. desJardins, and S. J. Freeland, “An interactive visualization tool to explore the biophysical properties of amino acids and their contribution to substitution matrices,” BMC Bioinformatics, vol. 7, article 329, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. Y. Hu, L. Chen, S. Ha et al., “Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 845–849, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. S. A. Osmani, S. Bak, A. Imberty, C. E. Olsen, and B. L. Møller, “Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses,” Plant Physiology, vol. 148, no. 3, pp. 1295–1308, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. J. McGuffin, K. Bryson, and D. T. Jones, “The PSIPRED protein structure prediction server,” Bioinformatics, vol. 16, no. 4, pp. 404–405, 2000. View at Scopus
  52. K. Ginalski, A. Elofsson, D. Fischer, and L. Rychlewski, “3D-Jury: a simple approach to improve protein structure predictions,” Bioinformatics, vol. 19, no. 8, pp. 1015–1018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Warren Liao, “Clustering of time series data—a survey,” Pattern Recognition, vol. 38, no. 11, pp. 1857–1874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and mining of time series data: experimental comparison of representations and distance measures,” Proceedings of the VLDB Endowment Archive, vol. 1, no. 2, pp. 1542–1552, 2008.
  55. L. J. Latecki, V. Megalooikonomou, Q. Wang, R. Lakaemper, C. A. Ratanamahatana, and E. Keogh, “Partial elastic matching of time series,” in Proceedings of the 5th IEEE International Conference on Data Mining (ICDM '05), pp. 701–704, November 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “Indexing multi-dimensional time-series with support for multiple distance measures,” in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 216–225, 2003.
  57. P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli, “Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation,” Artificial Intelligence in Medicine, vol. 45, no. 1, pp. 11–34, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. C. H. De Trad, Q. Fang, and I. Cosic, “Protein sequence comparison based on the wavelet transform approach,” Protein Engineering, vol. 15, no. 3, pp. 193–203, 2002. View at Scopus
  59. N. Mirshahi, S. Vasilache, S. -Y. Ji, J. Mottonen, D. J. Jacobs, and K. Najarian, “A signal processing method to explore similarity in protein flexibility,” Advances in Bioinformatics, vol. 2010, Article ID 454671, 8 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. R. M. Neal, Bayesian Learning for Neural Networks, Springer, 1st edition, 1996.
  61. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 1 edition, 2007.
  62. D. M. Titterington, “Bayesian methods for neural networks and related models,” Statistical Science, vol. 19, no. 1, pp. 128–139, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  63. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman & Hall/CRC, 2nd edition, 2003.
  64. R. D. Reed and R. J. Marks, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, The MIT Press, 1999.
  65. B. Schlkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, 1st edition, 2001.
  66. J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.
  67. E. Pekalska, P. Paclik, and R. P. W. Duin, “A generalized kernel approach to dissimilarity-based classification,” The Journal of Machine Learning Research, vol. 2, pp. 175–211, 2002.
  68. B. Haasdonk and C. Bahlmann, “Learning with distance substitution kernels,” in Proceedings of the Data Analysis, Machine Learning and Applications, vol. 3175 of Lecture Notes in Computer Science, pp. 220–227, Springer, Tbingen, Germany, 2004.
  69. T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer, “Classification on pairwise proximity data,” in Advances in Neural Information Processing Systems, vol. 11, pp. 438–444, Denver, Colo, USA, 1999.
  70. R. Luss and A. D'Aspremont, “Support vector machine classification with indefinite kernels,” in Advances in Neural Information Processing Systems, J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20, pp. 953–960, MIT Press, Cambridge, Mass, USA, 2008.
  71. A. Karatzoglou, K. Hornik, A. Smola, and A. Zeileis, “kernlab—an S4 package for kernel methods in R,” Journal of Statistical Software, vol. 11, pp. 1–20, 2004. View at Scopus
  72. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, Springer, 2003, corrected edition.
  74. J. Huang, S. Kawashima, and M. Kanehisa, “New amino acid indices based on residue network topology,” Genome informatics, vol. 18, pp. 152–161, 2007. View at Scopus
  75. D. Knisley, J. Knisley, and L. Roberts, “Biomolecular invariants of amino acid trees,” in Proceedings of the International Conference on Bioinformatics, Computational Biology, Genomics and Cheminformatics, M. Doble, W. Loging, J. Malone, and V. S. Tseng, Eds., 2009.
  76. B. Schlkopf, K. Tsuda, and J. Vert, Kernel Methods in Computational Biology, MIT Press, 2004.
  77. J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu, “New techniques for extracting features from protein sequences,” IBM Systems Journal, vol. 40, no. 2, pp. 426–441, 2001. View at Scopus
  78. B. Shahbaba and R. M. Neal, “Gene function classification using Bayesian models with hierarchy-based priors,” BMC Bioinformatics, vol. 7, no. 1, article 448, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus