About this Journal Submit a Manuscript Table of Contents
Advances in Bioinformatics
Volume 2012 (2012), Article ID 148045, 6 pages
http://dx.doi.org/10.1155/2012/148045
Research Article

Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains

1Bioinformatics, University of Freiburg, Georges-Köhler Allee 106, 79110 Freiburg im Breisgau, Germany
2Theoretical Biochemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
3Department of Statistics, Oxford University, 1 South Parks Road, Oxford OX1 3TG, UK

Received 4 April 2012; Accepted 18 June 2012

Academic Editor: Shandar Ahmad

Copyright © 2012 Martin Mann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mirny and E. Shakhnovich, “Protein folding theory: from lattice to all-atom models,” Annual Review of Biophysics and Biomolecular Structure, vol. 30, pp. 361–396, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,” Annual Review of Biophysics, vol. 37, pp. 289–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Istrail and F. Lam, “Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results,” Communications in Information and Systems, vol. 9, no. 4, pp. 303–346, 2009.
  4. K. A. Dill, “Theory for the folding and stability of globular proteins,” Biochemistry, vol. 24, no. 6, pp. 1501–1509, 1985. View at Scopus
  5. A. Renner and E. Bornberg-Bauer, “Exploring the fitness landscapes of lattice proteins,” Pacific Symposium on Biocomputing, pp. 361–372, 1997. View at Scopus
  6. J. Miao, J. Klein-Seetharaman, and H. Meirovitch, “The optimal fraction of hydrophobic residues required to ensure protein collapse,” Journal of Molecular Biology, vol. 344, no. 3, pp. 797–811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Backofen and S. Will, “A constraint-based approach to fast and exact structure prediction in three-dimensional protein models,” Constraints, vol. 11, no. 1, pp. 5–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. P. E. Huard, C. M. Deane, and G. R. Wood, “Modelling sequential protein folding under kinetic control,” Bioinformatics, vol. 22, no. 14, pp. e203–e210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Deane, M. Dong, F. P. E. Huard, B. K. Lance, and G. R. Wood, “Cotranslational protein folding—fact or fiction?” Bioinformatics, vol. 23, no. 13, pp. i142–i148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mann, S. Will, and R. Backofen, “CPSP-tools—exact and complete algorithms for high-throughput 3D lattice protein studies,” BMC Bioinformatics, vol. 9, article 230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Mann, D. Maticzka, R. Saunders, and R. Backofen, “Classifying proteinlike sequences in arbitrary lattice protein models using LatPack,” HFSP Journal, vol. 2, no. 6, pp. 396–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Saunders, M. Mann, and C. M. Deane, “Signatures of co-translational folding,” Biotechnology Journal, vol. 6, no. 6, pp. 742–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. ] Godzik, A. Kolinski, and J. Skolnick, “Lattice representations of globular proteins: how good are they?” Journal of Computational Chemistry, vol. 14, no. 10, pp. 1194–1202, 1993.
  14. B. A. Reva, M. F. Sanner, A. J. Olson, and A. V. Finkelstein, “Lattice modeling: accuracy of energy calculations,” Journal of Computational Chemistry, vol. 17, no. 8, pp. 1025–1032, 1996. View at Scopus
  15. J. Mañuch; and D. R. Gaur, “Fitting protein chains to cubic lattice is NP-complete,” Journal of Bioinformatics and Computational Biology, vol. 6, no. 1, pp. 93–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. G. Covell and R. L. Jernigan, “Conformations of folded proteins in restricted spaces,” Biochemistry, vol. 29, no. 13, pp. 3287–3294, 1990. View at Scopus
  17. D. A. Hinds and M. Levitt, “A lattice model for protein structure prediction at low resolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 7, pp. 2536–2540, 1992. View at Scopus
  18. B. H. Park and M. Levitt, “The complexity and accuracy of discrete state models of protein structure,” Journal of Molecular Biology, vol. 249, no. 2, pp. 493–507, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. D. S. Rykunov, B. A. Reva, and A. V. Finkelstein, “Accurate general method for lattice approximation of three-dimensional structure of a chain molecule,” Proteins, vol. 22, no. 2, pp. 100–109, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. B. A. Reva, D. S. Rykunov, A. V. Finkelstein, and J. Skolnick, “Optimization of protein structure on lattices using a self-consistent field approach,” Journal of Computational Biology, vol. 5, no. 3, pp. 531–538, 1998. View at Scopus
  21. P. Koehl and M. Delarue, “Building protein lattice models using self-consistent mean field theory,” Journal of Chemical Physics, vol. 108, no. 22, pp. 9540–9549, 1998. View at Scopus
  22. Y. Ponty, R. Istrate, E. Porcelli, and P. Clote, “LocalMove: computing on-lattice fits for biopolymers,” Nucleic Acids Research, vol. 36, pp. W216–W222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Pierri, A. De Grassi, and A. Turi, “Lattices for ab initio protein structure prediction,” Proteins, vol. 73, no. 2, pp. 351–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Mann and A. Dal Palu, “Lattice model refinement of protein structures,” in Proceedings of the Workshop on Constraint Based Methods for Bioinformatics (WCB '10), p. 7, 2010.
  25. E. Jacob and R. Unger, “A tale of two tails: why are terminal residues of proteins exposed?” Bioinformatics, vol. 23, no. 2, pp. e225–e230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. Ullah, L. Kapsokalivas, M. Mann, and K. Steinhöfel, “Protein folding simulation by two-stage optimization,” in Proceedings of the International Symposium on Intelligence Computation and Applications (ISICA '09), vol. 51 of Communications in Computer and Information Science, pp. 138–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Sun, “Reduced representation model of protein structure prediction: statistical potential and genetic algorithms,” Protein Science, vol. 2, no. 5, pp. 762–785, 1993. View at Scopus
  28. S. Bromberg and K. A. Dill, “Side-chain entropy and packing in proteins,” Protein Science, vol. 3, no. 7, pp. 997–1009, 1994. View at Scopus
  29. W. E. Hart, “Lattice and off-lattice side chain models of protein folding: linear time structure prediction better than 86% of optimal,” Journal of Computational Biology, vol. 4, no. 3, pp. 241–259, 1997. View at Scopus
  30. V. Heun, “Approximate protein folding in the HP side chain model on extended cubic lattices,” Discrete Applied Mathematics, vol. 127, no. 1, pp. 163–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kolinski and J. Skolnick, “Reduced models of proteins and their applications,” Polymer, vol. 45, no. 2, pp. 511–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. B. A. Reva, D. S. Rykunov, A. J. Olson, and A. V. Finkelstein, “Constructing lattice models of protein chains with side groups,” Journal of Computational Biology, vol. 2, no. 4, pp. 527–535, 1995. View at Scopus
  33. Y. Zhang, A. K. Arakaki, and J. Skolnick, “TASSER: an automated method for the prediction of protein tertiary structures in CASP6,” Proteins, vol. 61, no. 7, pp. 91–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kolinski, “Protein modeling and structure prediction with a reduced representation,” Acta Biochimica Polonica, vol. 51, no. 2, pp. 349–371, 2004. View at Scopus
  35. V. A. Eyrich, D. M. Standley, and R. A. Friesner, “Prediction of protein tertiauy structure to low resolution: performance for a large and structurally diverse test set,” Journal of Molecular Biology, vol. 288, no. 4, pp. 725–742, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick, and C. L. Brooks III, “Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models,” Proteins, vol. 41, no. 1, pp. 86–97, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. T. Wolfinger, S. Will, I. L. Hofacker, R. Backofen, and P. F. Stadler, “Exploring the lower part of discrete polymer model energy landscapes,” Europhysics Letters, vol. 74, no. 4, pp. 726–732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Mann, M. Abou Hamra, K. Steinhöfel, and R. Backofen, “Constraint-based local move definitions for lattice protein models including side chains,” in Proceedings of the Fifth Workshop on Constraint Based Methods for Bioinformatics (WCB '09), 2009.
  39. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Scopus
  40. W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of vectors,” Acta Crystallographica, vol. A34, pp. 827–828, 1978.
  41. Y. Choi and C. M. Deane, “FREAD revisited: accurate loop structure prediction using a database search algorithm,” Proteins, vol. 78, no. 6, pp. 1431–1440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Mann, C. Smith, M. Rabbath, M. Edwards, S. Will, and R. Backofen, “CPSP-web-tools: a server for 3D lattice protein studies,” Bioinformatics, vol. 25, no. 5, pp. 676–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Herráez, “Biomolecules in the computer: jmol to the rescue,” Biochemistry and Molecular Biology Education, vol. 34, no. 4, pp. 256–261, 2006. View at Scopus
  44. G. Wang and R. L. Dunbrack, “PISCES: recent improvements to a PDB sequence culling server,” Nucleic Acids Research, vol. 33, no. 2, pp. W94–W98, 2005. View at Publisher · View at Google Scholar · View at Scopus