About this Journal Submit a Manuscript Table of Contents
Advances in Civil Engineering
Volume 2011 (2011), Article ID 536171, 12 pages
http://dx.doi.org/10.1155/2011/536171
Research Article

Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

1Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
2Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA

Received 1 June 2011; Accepted 27 August 2011

Academic Editor: Manolis Papadrakakis

Copyright © 2011 Swagata Banerjee Basu and Masanobu Shinozuka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Werner, C. E. Taylor, J. E. Moore, J. S. Walton, and S. Cho, “A risk-based methodology for assessing the seismic performance of highway systems,” Tech. Rep. MCEER-00-0014, Multidisciplinary Center for Earthquake Engineering Research, State University of New York, Buffalo, NY, USA, 2000.
  2. S. Cho, P. Gordon, J. E. Moore, H. W. Richardson, M. Shinozuka, and S. Chang, “Integrating transportation network and regional economic models to estimate the costs of a large urban earthquake,” Journal of Regional Science, vol. 41, no. 1, pp. 39–65, 2001.
  3. N. Shiraki, M. Shinozuka, J. E. Moore, S. E. Chang, H. Kameda, and S. Tanaka, “System risk curves: probabilistic performance scenarios for highway networks subject to earthquake damage,” Journal of Infrastructure Systems, vol. 13, no. 1, pp. 43–54, 2007. View at Publisher · View at Google Scholar
  4. A. Kiremidjian, J. Moore, Y. Y. Fan, O. Yazlali, N. Basoz, and M. Williams, “Seismic risk assessment of transportation network systems,” Journal of Earthquake Engineering, vol. 11, no. 3, pp. 371–382, 2007. View at Publisher · View at Google Scholar
  5. Y. Zhou, S. Banerjee, and M. Shinozuka, “Socio-economic effect of seismic retrofit of bridges for highway transportation networks: a pilot study,” Structure and Infrastructure Engineering, vol. 6, no. 1-2, pp. 145–157, 2010. View at Publisher · View at Google Scholar
  6. M. Shinozuka and G. Deodatis, “Simulation of multi-dimensional Gaussian stochastic fields by spectral representation,” Applied Mechanics Reviews, vol. 49, no. 1, pp. 29–53, 1996.
  7. E. L. Wilson and M. R. Button, “Three-dimensional dynamic analysis for multi-component earthquake spectra,” Earthquake Engineering and Structural Dynamics, vol. 10, no. 3, pp. 471–476, 1982.
  8. E. L. Wilson, I. Suharwardy, and A. Habibullah, “A clarification of orthogonal effects in a three-dimensional seismic analysis,” Earthquake Spectra, vol. 11, no. 4, pp. 659–666, 1995.
  9. O. A. López and R. Torres, “The critical angle of seismic incidence and the maximum structural response,” Earthquake Engineering and Structural Dynamics, vol. 26, no. 9, pp. 881–894, 1997.
  10. J. J. Hernández and O. A. López, “Response to three-component seismic motion of arbitrary direction,” Earthquake Engineering and Structural Dynamics, vol. 31, no. 1, pp. 55–77, 2002. View at Publisher · View at Google Scholar
  11. M. Sultan and K. Kawashima, “Comparison of the seismic design of highway bridges in California and in Japan, Recent Selected Publications of Earthquake Engineering Div.,” Technical Memorandum of PWRI no. 3276, Public Works Research Institute (PWRI), Japan, 1994.
  12. Computers and Structures, Inc., SAP2000 Nonlinear Users Manual, Version 8, Berkeley, Calif, USA, 2002.
  13. Federal Highway Administration, Seismic design of bridges, Design Example No. 9 FHWA-SA-97-006, 1996.
  14. California Department of Transportation, Seismic Design Criteria, Sacramento, Calif, USA, 2004.
  15. S. Banerjee and M. Shinozuka, “Dynamic progressive failure of bridges,” in Proceedings of the ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural, Albuquerque, NM, USA, 2004.
  16. H. H. M. Hwang and J.-R. Huo, “Generation of hazard-consistent fragility curves for seismic loss estimation studies,” Tech. Rep. NCEER-94-0015, National Center for Earthquake Engineering Research (NCEER), State University of New York, Buffalo, NY, USA, 1994.
  17. S. Fukushima, Y. Kai, and K. Yashiro, “Study on the fragility of system—part 1: structure with brittle elements in its stories,” in Proceedings of the 11th World Conference on Earthquake Engineering, Pergamon, Elsevier Science Ltd., 1996, Paper No. 333.
  18. A. Singhal and A. S. Kiremidjian, “Bayesian updating of fragilities with application to RC frames,” Journal of Structural Engineering, vol. 124, no. 8, pp. 922–929, 1998.
  19. M. Shinozuka, M. Q. Feng, J. Lee, and T. Naganuma, “Statistical analysis of fragility curves,” Journal of Engineering Mechanics, vol. 126, no. 12, pp. 1224–1231, 2000. View at Publisher · View at Google Scholar
  20. K. R. Karim and F. Yamazaki, “Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 12, pp. 1839–1856, 2001.
  21. M. Shinozuka, M. Q. Feng, H. Kim, T. Uzawa, and T. Ueda, “Statistical analysis of fragility curves,” Tech. Rep. MCEER-03-0002, Multidisciplinary Center for Earthquake Engineering Research (MCEER), The State University of New York, Buffalo, NY, USA, 2003.
  22. E. Choi, R. DesRoches, and B. Nielson, “Seismic fragility of typical bridges in moderate seismic zones,” Engineering Structures, vol. 26, no. 2, pp. 187–199, 2004. View at Publisher · View at Google Scholar
  23. S. Banerjee and M. Shinozuka, “Nonlinear static procedure for seismic vulnerability assessment of bridges,” Computer-Aided Civil and Infrastructure Engineering, vol. 22, no. 4, pp. 293–305, 2007. View at Publisher · View at Google Scholar
  24. S. Banerjee, Statistical empirical and mechanistic fragility analysis of concrete bridges, Ph.D. dissertation, University of California, Irvine, Calif, USA, 2007.
  25. HAZUS, “Earthquake loss estimation methodology,” Technical Manual HAZUS99-SR2, National Institute of Building for the Federal Emergency Management Agency, Washington, DC, USA, 1999.
  26. S. Banerjee and M. Shinozuka, “Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis,” Probabilistic Engineering Mechanics, vol. 23, no. 1, pp. 12–22, 2008. View at Publisher · View at Google Scholar