About this Journal Submit a Manuscript Table of Contents
Advances in Civil Engineering
Volume 2012 (2012), Article ID 380795, 9 pages
http://dx.doi.org/10.1155/2012/380795
Research Article

Long-Term Field Performance of Pervious Concrete Pavement

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA

Received 12 October 2011; Revised 16 February 2012; Accepted 18 February 2012

Academic Editor: Serji N. Amirkhanian

Copyright © 2012 Aleksandra Radlińska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kwiatkowski, A. L. Welker, R. G. Traver, M. Vanacore, and T. Ladd, “Evaluation of an infiltration best management practice utilizing pervious concrete,” Journal of the American Water Resources Association, vol. 43, no. 5, pp. 1208–1222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. G. Traver, A. L. Welker, M. Horst, M. Vanacore, A. Braga, and L. Kob, “Lessons in porous concrete,” Stormwater, pp. 130–136, 2005.
  3. R. G. Traver, A. L. Welker, C. Emerson, M. Kwiatkowski, T. Ladd, and L. Kob, “Villanova urban stormwater partnership: porous concrete,” Stormwater, pp. 30–45, 2004.
  4. Florida Concrete and Products Association, Recommended Specifications for Pervious Pavement, publication 650.
  5. L. Frazer, “Paving paradise: the peril of impervious surfaces,” Environmental Health Perspectives, vol. 113, no. 7, pp. A456–A462, 2005. View at Scopus
  6. N. Delatte and S. S. Schwartz, “Sustainability benefits of pervious concrete pavement,” in Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Universita Politecnicadelle Marche, Ancona, Italy, 2010.
  7. J. Kevern, K. Wang, M. T. Suleiman, and V. R. Schaefer, “Pervious concrete construction: methods and quality control,” NRMCA Concrete Technology Forum: Focus on Pervious Concrete, Nashville, Tenn, USA, May 2006.
  8. N. Delatte, M. Miller, and A. Mrkajic, Portland Cement Pervious Concrete Pavement: Field Performance Investigation on Parking Lot and Roadway Pavements, Cleveland State University, Cleveland, Ohio, USA, 2007.
  9. M. Offenberg, “Producing pervious pavements,” Concrete International, vol. 27, no. 3, pp. 50–54, 2005.
  10. P. Tennis, M. Leming, and D. Akers, Pervious Concrete Pavements, Portland Cement Association, Skokie, Ill, USA, National Ready Mixed Concrete Association, Silver Spring, Md, USA, 2004.
  11. V. M. Malhotra, “No-fines concrete—its properties and applications,” Journal of American Concrete Institute, vol. 73, no. 11, pp. 628–644, 1976. View at Scopus
  12. K. Wang, D. E. Nelsen, and W. A. Nixon, “Damaging effects of deicing chemicals on concrete materials,” Cement and Concrete Composites, vol. 28, no. 2, pp. 173–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. T. Kevern, K. Wang, and V. R. Schaefer, The Effect of Coarse Aggregate on the Freeze-Thaw Durability of Pervious Concrete, Portland Cement Association, 2008.
  14. Stormwater Technology Fact Sheet, Porous Pavement Publication. EPA 832-F-99-023, US Environmental Protection Agency, Office of Water, Washington, DC, USA, 1999.
  15. C. Dierks, P. Gobel, and W. Benze, “Next generation water sensitive stormwater management techniques,” in Proceedings of the 2nd National Conference on Water Sensitive Urban Design, Brisbane, Australia, 2002.
  16. M. Legret, V. Colandini, and C. LeMarc, “Effects of porous pavement with reservoir structure on the quality of runoff water and soil,” Science of the Total Environment, vol. 190, special issue, pp. 335–340, 1996.
  17. M. S. Sumanasooriya and N. Neithalath, “Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction,” Cement and Concrete Composites, vol. 33, no. 8, pp. 778–787, 2011.
  18. D. R. Bentz, “Virtual pervious concrete: microstructure, percolation, and permeability,” ACI Materials Journal, vol. 105, no. 3, pp. 297–301, 2008. View at Scopus
  19. L. M. Haselbach, S. Valavala, and F. Montes, “Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems,” Journal of Environmental Management, vol. 81, no. 1, pp. 42–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. Haselbach, “Potential for clay clogging of pervious concrete under extreme conditions,” Journal of Hydrologic Engineering, vol. 15, no. 1, pp. 67–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Chopra, S. Kakuturu, C. Ballock, J. Spence, and M. Wanielista, “Effect of rejuvenation methods on the infiltration rates of pervious concrete pavements,” Journal of Hydrologic Engineering, vol. 15, no. 6, Article ID 009006QHE, pp. 426–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Horst, A. Welker, and R. Traver, “Multiyear performance of a pervious concrete infiltration basin BMP,” Journal of Irrigation and Drainage, vol. 137, no. 6, pp. 352–358, 2011.
  23. K. F. Bruce, Porous Pavements, Taylor and Francis, Boca Raton, Fla, USA, 2005.
  24. Z. Teng and J. J. Sansalone, “In-situ storm water treatment and recharge through infiltration: particle transport and separation mechanisms,” Journal for Environmental Engineering, vol. 130, no. 9, pp. 1008–1020, 2004.
  25. M. Scholz and P. Grabowiecki, “Review of permeable pavement systems,” Building and Environment, vol. 42, no. 11, pp. 3830–3836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. T. Rushton, “Low-impact parking lot design reduces runoff and pollutant loads,” Journal of Water Resources Planning and Management, vol. 127, no. 3, pp. 172–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. ASTM Standard C39-05, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, vol. 4 of Annual Book of ASTM Standards, ASTM International, West Conshohocken, Pa, USA, 2nd edition.
  28. ASTM Standard C42-04, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete, vol. 4 of Annual Book of ASTM Standards, ASTM International, West Conshohocken, Pa, USA, 2nd edition.
  29. ASTM Standard C496-04, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, vol. 4 of Annual Book of ASTM Standards, ASTM International, West Conshohocken Pa, 2nd edition.
  30. D. Akers, M. Leming, and P. Tennis, Pervious Concrete Pavements, Portland Cement Association, Skokie, Ill, USA, National Ready Mixed Concrete Association, Silver Spring, Md, USA, 2004.
  31. E. Masad, B. Muhunthan, N. Shashidhar, and T. Harman, “Internal structure characterization of asphalt concrete using image analysis,” Journal of Computing in Civil Engineering, vol. 13, no. 2, pp. 88–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Sumanasooriya, D. P. Bentz, and N. Neithalath, “Predicting the permeability of pervious concretes from planar images,” NRMCA 2009 Concrete Technology Forum: Focus on Performance Prediction, pp. 11, 2009.
  33. N. Delatte, D. Miller, and A. Mrkajic, “Portland cement pervious concrete pavement: field performance investigation on parking lot and roadway pavements,” RMC Research and Education Foundation, Cleveland State University, Cleveland, Ohio, USA, http://rmc-foundation.org/images/Long%20Term%20Field%20Performance%20of%20Pervious%20Final%20Report.pdf.
  34. P. Jeffers, Water quality comparison of pervious concrete and porous asphalt products for infiltration best management practices, M.S. thesis, Villanova University, 2009, http://www3.villanova.edu/vusp/Outreach/theses.htm.
  35. D. Miller, Field performance of PCPC in severe freeze-thaw environments, M.S. thesis, Cleveland State University, 2007.
  36. A. Mrkajic, Investigation and evaluation of PCPC using nondestructive testing and laboratory evaluation of field samples, M.S. thesis, Cleveland State University, 2007.
  37. ASTM Standard C1701-09, Standard Test Method for Infiltration Rate of In Place Pervious Concrete, vol. 4 of Annual Book of ASTM Standards, ASTM International, West Conshohocken, Pa, USA, 2nd edition.
  38. J. O’Dell, Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry, U.S. Environmental Protection Agency, 1993.
  39. M. Kwiatkowski, Water quality study of a porous concrete infiltration best management practice, M.S. thesis, Villanova University, 2004.