About this Journal Submit a Manuscript Table of Contents
Advances in Civil Engineering
Volume 2012 (2012), Article ID 673821, 8 pages
http://dx.doi.org/10.1155/2012/673821
Research Article

Optimization of Post-Tensioned Box Girder Bridges with Special Reference to Use of High-Strength Concrete Using AASHTO LRFD Method

1Department of Engineering and Computer Science, West Texas A&M University, WTAMU Box 60767, Canyon, TX 79016, USA
2Engineering Technical Group, Arizona Department of Transportation, 205 South 17th Avenue, MD 618E, Phoenix, AZ 85007, USA
3Design Section, Nfra Inc., 77 E. Thomas Road, Suite 200, Phoenix, AZ 85012, USA

Received 9 January 2012; Revised 17 May 2012; Accepted 24 May 2012

Academic Editor: Sami W. Tabsh

Copyright © 2012 Byungik Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. AASHTO, Standard Specification for Highway Bridges, AASHTO, Washington, DC, USA, 17th edition, 2002.
  2. AASHTO, AASHTO LRFD Bridge Design Specifications, 2007 Edition and 2008 addendums, AASHTO LRFD, Washington, DC, USA, 2007.
  3. A. S. Nowak, “Calibration of LRFD bridge code,” ASCE Journal of Structural Engineering, vol. 121, no. 8, pp. 1245–1251, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Barr, M. O. Eberhard, and J. F. Stanton, “Live-load distribution factors in prestressed concrete girder bridges,” ASCE Journal of Bridge Engineering, vol. 6, no. 5, pp. 298–306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. G. Bishara, M. C. Liu, and N. D. El-Ali, “Wheel load distribution on simply supported skew I-beam composite bridges,” ASCE Journal of Structural Engineering, vol. 119, no. 2, pp. 399–419, 1993. View at Scopus
  6. R. V. Nutt, T. Zokaie, and R. A. Schamber, “Distribution of wheel loads on highway bridges,” NCHRP Project. no. 12–26, National Cooperative Highway Research Program, TRB, Washington, DC, USA, 1987.
  7. T. Zokaie, “AASHTO-LRFD live load distribution specifications,” ASCE Journal of Bridge Engineering, vol. 5, no. 2, pp. 131–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Zokaie, T. A. Osterkamp, and R. A. Imbsen, “Distribution of wheel loads on highway bridges,” Transportation Research Record 1290, Washington DC, USA, 1991.
  9. Bridge Tech, Inc., “NCHRP report 592: simplified live load distribution factor equations,” Transportation Research Board, National Research Council, Washington, DC, USA, 2007.
  10. Bridge Tech, Inc., “NCHRP report 12–26: simplified live load distribution factor equations,” Transportation Research Board, National Research Council, Washington, DC, USA, 2006.
  11. Z. P. Bazant and L. Panula, “Creep and shrinkage characterization for analyzing prestressed concrete structures,” Journal—Prestressed Concrete Institute, vol. 25, no. 3, pp. 86–122, 1980. View at Scopus
  12. S. H. Ahmad and S. P. Shah, “Structural properties of high strength concrete and its implication for precast prestressed concrete,” Journal—Prestressed Concrete Institute, vol. 30, no. 6, pp. 92–119, 1985. View at Scopus
  13. J. J. Myers and Y. Yang, “Practical issues for the application of high-performance concrete to highway structures,” ASCE Journal of Bridge Engineering, vol. 6, no. 6, pp. 613–627, 2001. View at Publisher · View at Google Scholar · View at Scopus