About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2010 (2010), Article ID 428270, 13 pages
http://dx.doi.org/10.1155/2010/428270
Research Article

Dynamic Fuzzy Logic-Ant Colony System-Based Route Selection System

1Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman 76169-133, Iran
2International Center for Science, High Technology, and Environmental Sciences, Kerman, Iran
3Advanced Communications Research Institute, Sharif University of Technology, Tehran, Iran

Received 8 June 2010; Accepted 23 August 2010

Academic Editor: Hani Hagras

Copyright © 2010 Hojjat Salehinejad and Siamak Talebi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Barth, K. Boriboonsomsin, and A. Vu, “Environmentally-Friendly navigation,” in Proceedings of the 10th International IEEE Conference on Intelligent Transportation Systems (ITSC '07), pp. 684–689, October 2007. View at Publisher · View at Google Scholar
  2. H. Wang and B. Zhang, “Route planning and navigation system for an autonomous land vehicle,” in Proceedings of the 3rd International Conference on Vehicle Navigation and Information Systems (VNIS '92), pp. 135–140, Norway, 1992.
  3. L. W. Lup and D. Srinivasan, “A hybrid evolutionary algorithm for dynamic route planning,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 4743–4749, Singapore, September 2007. View at Publisher · View at Google Scholar
  4. S. Edelkamp, S. Jabbar, and T. Willhalm, “Geometric travel planning,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp. 5–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Yanyan, M. G. H. Bell, and K. Bogenberger, “Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 1, pp. 14–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kim, M. E. Lewis, and C. C. White, “State space reduction for nonstationary stochastic shortest path problems with real-time traffic information,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp. 273–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Yanyan, L. Ying, and D. Huabing, “The model of optimum route selection in vehicle automatic navigation system based on unblocked reliability analyses,” IEEE Intelligent Transportation Systems Proceedings, vol. 2, pp. 975–978, 2003.
  8. J. Miura, M. Itoh, and Y. Shirai, “Toward vision-based intelligent navigator: its concept and prototype,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 2, pp. 136–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. G. K. H. Pang, K. Takahashi, T. Yokota, and H. Takenaga, “Adaptive route selection for dynamic route guidance system based on fuzzy-neural approaches,” IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp. 2028–2041, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Pang and M.-H. Chu, “Route selection for vehicle navigation and control,” in Proceedings of the 5th IEEE International Conference on Industrial Informatics (INDIN '07), pp. 693–698, June 2007. View at Publisher · View at Google Scholar
  11. D. Teodorovic and S. Kikuchi, “Transportation route choice model using fuzzy interface technique,” in Proceedings of the 1st International Conference Uncertainty Modeling and Analysis: Fuzzy Reasoning, Probabilistic Models, and Risk Management, pp. 140–145, Maryland University, College Park, 1990.
  12. Y. Kambayashi, Y. Tsujimura, H. Yamachi, and H. Yamamoto, “Integrating uncomfortable intersection-turns to subjectively optimal route selection using genetic algorithm,” in Proceedings of the 5th IEEE International Conference on Computational Cybernetics (ICCC '07), pp. 203–208, Tunisia, October 2007. View at Publisher · View at Google Scholar
  13. S. Zidi, S. Maouche, and S. Hammadi, “Real-time route planning of the public transportation system,” in Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC '06), pp. 55–60, Canada, September 2006.
  14. A. Broggi, M. Cellario, P. Lombardi, and M. Porta, “An evolutionary approach to visual sensing for vehicle navigation,” IEEE Transactions on Industrial Electronics, vol. 50, no. 1, pp. 18–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Salehinejad, F. Pouladi, and S. Talebi, “A new route selection system: multiparameter ant algorithm based vehicle navigation approach,” in Proceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation, pp. 1089–1094, IEEE Computer Society, Vienna, Austria, 2008.
  16. H. Salehinejad and S. Talebi, “A new ant algorithm based vehicle navigation system: a wireless networking approach,” in Proceedings of the International Symposium on Telecommunications (IST '08), pp. 36–41, Tehran, Iran, August 2008. View at Publisher · View at Google Scholar
  17. H. Salehinejad, H. Nezamabadi-Pour, S. Saryazdi, and F. Farrahi-Moghaddam, “Combined A*-ants algorithm: a new multi-parameter vehicle navigation scheme,” in Proceedings of the 16th Iranian Conference on Electrical Engineering (ICEE '08), pp. 154–159, Tehran, Iran, 2008.
  18. S. Abed and C. Swann, “Analysis of freeway traffic times-series data by using Box Jenkins techniques,” Transportation Research, no. 72, pp. 1–9, 1979. View at Scopus
  19. H. Nicholson and C. D. Swann, “The prediction of traffic flow volumes based on spectral analysis,” Transportation Research, vol. 8, no. 6, pp. 533–538, 1974. View at Scopus
  20. I. Okutani and Y. J. Stephanedes, “Dynamic prediction of traffic volume through Kalman filtering theory,” Transportation Research. Part B, vol. 18, no. 1, pp. 1–11, 1984. View at Scopus
  21. I. Ohe, H. Kawashima, M. Kojima, and Y. Kaneko, “A method for automatic detection of traffic incidents using neural networks,” in Proceedings of the Vehicle Navigation and Information Systems Conference in Conjunction with the Pacific Rim TransTech Conference, A Ride into the Future, pp. 231–235, 1995.
  22. C. Taylor and D. Meldrum, “Freeway data prediction using neural networks,” in Proceedings of the Vehicle Navigation and Information Systems Conference in Conjunction with the Pacific Rim TransTech Conference, A Ride into the Future, pp. 225–230, 1995.
  23. M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 26, no. 1, pp. 29–41, 1996. View at Scopus
  24. M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 1–24, 1997. View at Scopus
  25. L. W. Dong and C. T. Xiang, “Ant colony optimization for VRP and mail delivery problems,” in Proceedings of the IEEE International Conference on Industrial Informatics (INDIN '06), pp. 1143–1148, August 2006. View at Publisher · View at Google Scholar
  26. C. L. Liu, “Best path planning for public transportation systems,” in Proceedings of the IEEE 5th International Conference on Intelligence Transportation Systems, pp. 834–839, 2002.
  27. M. Dorigo, “Ant foraging behavior, combinatorial optimization, and routing in communication networks,” Swarm Intelligence: From Natural to Artificial Systems, pp. 25–107, 1999, Santa Fe Institute Studies in the Sciences of Complexity.
  28. S. Favuzza, G. Graditi, M. G. Ippolito, and E. R. Sanseverino, “Optimal electrical distribution systems reinforcement planning using gas micro turbines by dynamic ant colony search algorithm,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 580–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. CH. Schuh, “Fuzzy sets and their application in medicine,” in Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS '05), pp. 86–91, Detroit, Mich, USA, 2005.
  30. E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” Proceedings of the Institution of Electrical Engineers, vol. 121, no. 12, pp. 1585–1588, 1974.
  31. P. Chemouil, J. Khalfet, and M. Lebourges, “Fuzzy control approach for adaptive traffic routing,” IEEE Communications Magazine, vol. 33, no. 7, pp. 70–76, 1995. View at Publisher · View at Google Scholar
  32. T. Fukuda and T. Shibata, “Theory and applications of neural networks for industrial control systems,” IEEE Transactions on Industrial Electronics, vol. 39, no. 6, pp. 472–489, 1992. View at Publisher · View at Google Scholar
  33. H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox For Use with MATLAB®, The MathWorks, 2006.
  34. V. Maniezzo, L. M. Gambardella, and F. De Luigi, Ant Colony Optimization, New Optimization Techniques in Engineering, Springer, Berlin, Germany, 2004.