About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2011 (2011), Article ID 138078, 12 pages
Research Article

Hybrid PSO-SA Type Algorithms for Multimodal Function Optimization and Reducing Energy Consumption in Embedded Systems

1INRIA Nancy—Grand Est/LORIA, 615 Rue du Jardin Botanique, 54600 Villers-Lès-Nancy, France
2LMIA—MAGE, Université de Haute-Alsace, 4 Rue des Frères Lumière, 68093 Mulhouse, France
3IECN—LORIA, Nancy-Université, Université Henri Poincaré, 54506 Vandoeuvre-Lès-Nancy, France

Received 31 December 2010; Revised 22 March 2011; Accepted 11 April 2011

Academic Editor: Chuan-Kang Ting

Copyright © 2011 Lhassane Idoumghar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The paper presents a novel hybrid evolutionary algorithm that combines Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from this local optima becomes difficult. To avoid premature convergence of PSO, we present a new hybrid evolutionary algorithm, called HPSO-SA, based on the idea that PSO ensures fast convergence, while SA brings the search out of local optima because of its strong local-search ability. The proposed HPSO-SA algorithm is validated on ten standard benchmark multimodal functions for which we obtained significant improvements. The results are compared with these obtained by existing hybrid PSO-SA algorithms. In this paper, we provide also two versions of HPSO-SA (sequential and distributed) for minimizing the energy consumption in embedded systems memories. The two versions, of HPSO-SA, reduce the energy consumption in memories from 76% up to 98% as compared to Tabu Search (TS). Moreover, the distributed version of HPSO-SA provides execution time saving of about 73% up to 84% on a cluster of 4 PCs.