About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2011 (2011), Article ID 183764, 18 pages
http://dx.doi.org/10.1155/2011/183764
Research Article

Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study

Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516, Egypt

Received 5 May 2011; Revised 30 June 2011; Accepted 16 August 2011

Academic Editor: Serafín Moral

Copyright © 2011 Abdel Badie Sharkawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Bouacha, M. A. Yallese, T. Mabrouki, and J.-F. Rigal, “Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool,” International Journal of Refractory Metals and Hard Materials, vol. 28, no. 3, pp. 349–361, 2010. View at Publisher · View at Google Scholar
  2. D. Singh and P. V. Rao, “A surface roughness prediction model for hard turning process,” International Journal of Advanced Manufacturing Technology, vol. 32, no. 11-12, pp. 1115–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Agarwal and P. Venkateswara Rao, “Modeling and prediction of surface roughness in ceramic grinding,” International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1065–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Zain, H. Haron, and S. Sharif, “Prediction of surface roughness in the end milling machining using Artificial Neural Network,” Expert Systems with Applications, vol. 37, no. 2, pp. 1755–1768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Briceno, H. El-Mounayri, and S. Mukhopadhyay, “Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process,” International Journal of Machine Tools and Manufacture, vol. 42, no. 6, pp. 663–674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Karayel, “Prediction and control of surface roughness in CNC lathe using artificial neural network,” Journal of Materials Processing Technology, vol. 209, no. 7, pp. 3125–3137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. S. Topal, “The role of stepover ratio in prediction of surface roughness in flat end milling,” International Journal of Mechanical Sciences, vol. 51, no. 11-12, pp. 782–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Lu, “Study on prediction of surface quality in machining process,” Journal of Materials Processing Technology, vol. 205, no. 1–3, pp. 439–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Çolak, C. Kurbanoǧlu, and M. C. Kayacan, “Milling surface roughness prediction using evolutionary programming methods,” Materials and Design, vol. 28, no. 2, pp. 657–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Roy, “Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite,” Journal of Materials Processing Technology, vol. 173, no. 3, pp. 337–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Oktem, T. Erzurumlu, and F. Erzincanli, “Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm,” Materials and Design, vol. 27, no. 9, pp. 735–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Lo, “An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling,” Journal of Materials Processing Technology, vol. 142, no. 3, pp. 665–675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. W.-H. Ho, J.-T. Tsai, B.-T. Lin, and J.-H. Chou, “Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm,” Expert Systems with Applications, vol. 36, no. 2, part 2, pp. 3216–3222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. G. Benardos and G.-C. Vosniakos, “Predicting surface roughness in machining: a review,” International Journal of Machine Tools and Manufacture, vol. 43, no. 8, pp. 833–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. L. Shieh, Y. K. Yang, P. L. Chang, and J. T. Jeng, “Robust neural-fuzzy method for function approximation,” Expert Systems with Applications, vol. 36, no. 3, part 2, pp. 6903–6913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. B. Sharkawy, “Genetic fuzzy self-tuning PID controllers for antilock braking systems,” Engineering Applications of Artificial Intelligence, vol. 23, no. 7, pp. 1041–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-S. Roger Jang and C.-T. Sunand Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, 1997.
  18. S. A. Billings, H. L. Wei, and M. A. Balikhin, “Generalized multiscale radial basis function networks,” Neural Networks, vol. 20, no. 10, pp. 1081–1094, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 2nd edition, 1999.
  20. M. M. Gupta, L. Jin, and N. Homma, Static and Dynamic Neural Networks: From Fundamental to Advanced Theory, John Wiley & Sons, Hoboken, NJ, USA, 2003.
  21. S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, “Sparse modeling using orthogonal forward regression with PRESS statistic and regularization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 2, pp. 898–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Asiltürk and M. Çunkaş, “Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method,” Expert Systems with Applications, vol. 38, no. 5, pp. 5826–5832, 2011. View at Publisher · View at Google Scholar
  23. M. R. Razfar, R. Farshbaf Zinati, and M. Haghshenas, “Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm,” International Journal of Advanced Manufacturing Technology, vol. 52, no. 5–8, pp. 487–495, 2011. View at Publisher · View at Google Scholar
  24. M. F. F. Ab. Rashid and M. R. Abdul Lani, “Surface roughness prediction for CNC milling process using artificial neural network,” in Proceedings of the World Congress on Engineering (WCE '10), vol. 3, London, UK, July 2010.
  25. S. Z. Chavoshi and M. Tajdari, “Surface roughness modelling in hard turning operation of AISI 4140 using CBN cutting tool,” International Journal of Material Forming, vol. 3, no. 4, pp. 233–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. K. MohanaRao, G. Rangajanardhaa, D. HanumanthaRao, and M. SreenivasaRao, “Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm,” Journal of Materials Processing Technology, vol. 209, no. 3, pp. 1512–1520, 2009. View at Publisher · View at Google Scholar
  27. P. D. Wasserman, Advanced Methods in Neural Computing, Van Nostrand, New York, NY, USA, 1993.
  28. M. Zanaganeh, S. J. Mousavi, and A. F. Etemad Shahidi, “A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters,” Engineering Applications of Artificial Intelligence, vol. 22, no. 8, pp. 1194–1202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–685, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, Mass, USA, 1999.
  31. A. K. Nandi and D. K. Pratihar, “Automatic design of fuzzy logic controller using a genetic algorithm—to predict power requirement and surface finish in grinding,” Journal of Materials Processing Technology, vol. 148, no. 3, pp. 288–300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. N. C. Tsourveloudis, “Predictive modeling of the Ti6A14V alloy surface roughness,” Journal of Intelligent Robot Systems, vol. 60, pp. 513–530, 2010.
  33. M. Dong and N. Wang, “Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness,” Applied Mathematical Modelling, vol. 35, no. 3, pp. 1024–1035, 2011. View at Publisher · View at Google Scholar · View at Scopus