About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2011 (2011), Article ID 786369, 11 pages
http://dx.doi.org/10.1155/2011/786369
Research Article

A New Framework of Multiphase Segmentation and Its Application to Partial Volume Segmentation

1Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA
2Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8042, USA

Received 14 October 2010; Revised 24 January 2011; Accepted 16 February 2011

Academic Editor: Antonio Di Nola

Copyright © 2011 Fuhua Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level set approach to multiphase motion,” Journal of Computational Physics, vol. 127, no. 1, pp. 179–195, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. J. Lie, M. Lysaker, and X. C. Tai, “A variant of the level set method and applications to image segmentation,” Mathematics of Computation, vol. 75, no. 255, pp. 1155–1174, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  4. G. Chung and L. A. Vese, “Energy minimization based segmentation and denoising using a multilayer level set approach,” in Energy Minimization Methodsin Computer Vision and Pattern Recognition, vol. 3757 of Lecture Notes in Computer Science, pp. 439–455, 2005.
  5. S. R. Thiruvenkadam, S. Arcot, and Y. Chen, “A PDE based method for fuzzy classification of medical images,” in Proceedings of the International Conference on Image Processing (ICIP '06), vol. 481, pp. 1805–1808, 2006. View at Publisher · View at Google Scholar
  6. J. Shen, “A stochastic-variational model for soft Mumford-Shah segmentation,” International Journal of Biomedical Imaging, vol. 2006, Article ID 92329, 14 pages, 2006. View at Publisher · View at Google Scholar
  7. S. Esedoglu and Y. H. R. Tsai, “Threshold dynamics for the piecewise constant Mumford-Shah functional,” Journal of Computational Physics, vol. 211, no. 1, pp. 367–384, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  8. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” The Journal of Chemical Physics, vol. 28, no. 2, pp. 258–267, 1958.
  9. L. Modica and S. Mortola, “Un esempio di Γ-convergenza,” Bollettino della Unione Matematica Italiana, vol. 14, pp. 285–299, 1977.
  10. L. Modica, “The gradient theory of phase transitions and the minimal interface criterion,” Archive for Rational Mechanics and Analysis, vol. 98, no. 2, pp. 123–142, 1987. View at Publisher · View at Google Scholar · View at MathSciNet
  11. B. Bourdin and A. Chambolle, “Design-dependent loads in topology optimization,” ESAIM Control, Optimisation and Calculus of Variations, no. 9, pp. 19–48, 2003. View at Publisher · View at Google Scholar
  12. M. Burger and R. Stainko, “Phase-field relaxation of topology optimization with local stress constraints,” SIAM Journal on Control and Optimization, vol. 45, no. 4, pp. 1447–1466, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  13. M. Y. Wang and S. Zhou, “A variational method for structural topology optimization,” Computer Modeling in Engineering and Sciences, vol. 6, no. 6, pp. 547–566, 2004.
  14. M. Rumpf and B. Wirth, “A nonlinear elastic shape averaging approach,” SIAM Journal on Imaging Sciences, vol. 2, pp. 800–833, 2009.
  15. J. H. An and Y. Chen, “Region based image segmentation using modified Mumford-Shah algorithm,” in Proceedings of the 1st International Conference on Scale Space and Variation Variational Methods in Computer Vision, vol. 4485, pp. 733–742, 2007.
  16. F. Chen, Y. Chen, and H. D. Tagare, “An extension of sine-sinc model based on logarithm of likelihood,” in Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV '08), vol. 1, pp. 222–227, 2008.
  17. Y. M. Jung, S. H. Kang, and J. Shen, “Multiphase image segmentation via Modica-Mortola phase transition,” SIAM Journal on Applied Mathematics, vol. 67, no. 5, pp. 1213–1232, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  18. Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-D image segmentation,” International Journal of Computer Vision, vol. 70, no. 2, pp. 109–131, 2006. View at Publisher · View at Google Scholar
  19. X. Bresson and T. F. Chan, “Non-local unsupervised variational image segmentation model,” UCLA CAM Report 08-67, 2008.
  20. C. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, Pa, USA, 2002.
  21. A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural Computation, vol. 15, no. 4, pp. 915–936, 2003. View at Publisher · View at Google Scholar · View at PubMed
  22. K. V. Leeput, F. Maes, D. Vandermeulen, and P. Suetens, “A unifying frame-work for partial volume segmentation of brain MR images,” IEEE Transactions on Medical Imaging, vol. 22, pp. 105–119, 2003.
  23. W. J. Niessen, K. L. Vincken, J. Weickert, B. M. Ter Haar Romeny, and M. A. Viergever, “Multiscale segmentation of three-dimensional MR brain images,” International Journal of Computer Vision, vol. 31, no. 2, pp. 185–202, 1999. View at Scopus
  24. D. Eremina, X. Li, W. Zhu, J. Wang, and Z. Liang, “Investigation on an EM framework for partial volume image segmentation,” in Medical Imaging: Image Processing, vol. 6144 of Proceedings of SPIE, pp. 1–9, February 2006. View at Publisher · View at Google Scholar
  25. H. D. Targare, Y. Chen, and R. K. Fulbright, “A reparameterized level set algorithm and its comparison with EM-based partial volume segmentation of MR brain images,” SPIE 2008.
  26. D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities,” Pattern Recognition Letters, vol. 20, no. 1, pp. 57–68, 1999. View at Publisher · View at Google Scholar