About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2011 (2011), Article ID 980216, 19 pages
http://dx.doi.org/10.1155/2011/980216
Research Article

A Probability Collectives Approach with a Feasibility-Based Rule for Constrained Optimization

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Received 6 May 2011; Accepted 6 September 2011

Academic Editor: R. Saravanan

Copyright © 2011 Anand J. Kulkarni and K. Tai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Kulkarni and K. Tai, “Probability Collectives: a multi-agent approach for solving combinatorial optimization problems,” Applied Soft Computing Journal, vol. 10, no. 3, pp. 759–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. H. Wolpert, “Information theory—the bridge connecting bounded rational game theory and statistical physics,” in Complex Engineered Systems, D. Braha, A. A. Minai, and Y. Bar-Yam, Eds., pp. 262–290, Springer, 2006.
  3. S. R. Bieniawski, Distributed optimization and flight control using collectives, PhD dissertation, Stanford University, Stanford, Calif, USA, 2005.
  4. A. J. Kulkarni and K. Tai, “Probability collectives for decentralized, distributed optimization: a collective intelligence approach,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '08), pp. 1271–1275, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Kulkarni and K. Tai, “Probability collectives: a decentralized, distributed optimization for multi-agent systems,” in Applications of Soft Computing, Mehnen, J. Mehnen, M. Koeppen, A. Saad, and A. Tiwari, Eds., pp. 441–450, Springer, 2009.
  6. G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp. 1243–1248, 1968. View at Scopus
  7. M. Vasirani and S. Ossowski, “Collective-based multiagent coordination: a case study,” in Engineering Societies in the Agents World VIII, vol. 4995 of Lecture Notes in Computer Science, pp. 240–253, 2008.
  8. T. Ray, K. Tai, and K. C. Seow, “An evolutionary algorithm for constrained optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 771–777, 2000.
  9. T. Ray, K. Tai, and K. C. Seow, “Multiobjective design optimization by an evolutionary algorithm,” Engineering Optimization, vol. 33, no. 4, pp. 399–424, 2001. View at Scopus
  10. K. Tai and J. Prasad, “Target-matching test problem for multiobjective topology optimization using genetic algorithms,” Structural and Multidisciplinary Optimization, vol. 34, no. 4, pp. 333–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Wolpert and K. Tumer, “An introduction to collective intelligence,” Tech. Rep. NASA ARC-IC-99-63, NASA Ames Research Center, 1999.
  12. D. H. Wolpert, C. E. M. Strauss, and D. Rajnarayan, “Advances in distributed optimization using probability collectives,” Advances in Complex Systems, vol. 9, no. 4, pp. 383–436, 2006. View at Scopus
  13. D. H. Wolpert, N. E. Antoine, S. R. Bieniawski, and I. R. Kroo, “Fleet assignment using collective intelligence,” in Proceedings of the 42nd AIAA Aerospace Science Meeting Exhibit, 2004.
  14. S. R. Bieniawski, I. M. Kroo, and D. H. Wolpert, “Discrete, continuous, and constrained optimization using collectives,” in Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, vol. 5, pp. 3079–3087, September 2004. View at Scopus
  15. T. Basar and G. J. Olsder, Dynamic Non-Cooperative Game Theory, Academic Press, New York, NY, USA, 1995.
  16. C. F. Huang, D. H. Wolpert, S. Bieniawski, and C. E. M. Strauss, “A comparative study of probability collectives based multi-agent systems and genetic algorithms,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '05), pp. 751–752, June 2005. View at Scopus
  17. S. Bhadra, S. Shakkottai, and P. Gupta, “Min-cost selfish multicast with network coding,” IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 5077–5087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Xi and E. M. Yeh, “Distributed algorithms for minimum cost multicast with network coding in wireless networks,” in Proceedings of 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006.
  19. J. Yuan, Z. Li, W. Yu, and B. Li, “A cross-layer optimization framework for multicast in multi-hop wireless networks,” in Proceedings of the 1st International Conference on Wireless Internet (WICON '05), pp. 47–54, July 2005. View at Scopus
  20. M. Chatterjee, S. K. Das, and D. Turgut, “On-demand weighted clustering algorithm (WCA) for ad hoc networks,” in Proceedings of 43rd IEEE Global Telecommunication Conference (GLOBECOM '00), pp. 1697–1701, 2000. View at Scopus
  21. M. H. Amerimehr, B. K. Khalaj, and P. M. Crespo, “A distributed cross-layer optimization method for multicast in interference-limited multihop wireless networks,” Journal on Wireless Communications and Networking, vol. 2008, Article ID 702036, 13 pages, 2008.
  22. M. H. A. Mehr and B. H. Khalaj, “A distributed probability collectives optimization method for multicast in CDMA wireless data networks,” in Proceedings of the 4th IEEE International Symposium on Wireless Communication Systems (ISWCS '07), pp. 617–621, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. S. Ryder and K. G. Ross, “A probability collectives approach to weighted clustering algorithms for ad hoc networks,” in Proceedings of the 3rd IASTED International Conference on Communications and Computer Networks (CCN '05), pp. 94–99, October 2005. View at Scopus
  24. M. Smyrnakis and D. S. Leslie, “Sequentially updated probability collectives,” in Proceedings of the 48th IEEE Conference on Decision and Control, pp. 5774–5779, Shanghai, China, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Sislak, P. Volf, M. Pechoucek, and N. Suri, “Automated Conflict Resolution Utilizing Probability Collectives Optimizer,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 41, no. 3, pp. 365–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Kulkarni and K. Tai, “Probability collectives: a distributed optimization approach for constrained problems,” in Proceedings of IEEE World Congress on Computational Intelligence, pp. 3844–3851, 2010.
  27. A. J. Kulkarni and K. Tai, “Solving constrained optimization problems using probability collectives and a penalty function approach,” International Journal of Computational Intelligence and Applications. In press.
  28. B. Autry, University course timetabling with probability collectives, M.S. thesis, Naval Postgraduate School, Montery, Calif, USA, 2008.
  29. C. F. Huang and B. R. Chang, “Probability collectives multi-agent systems: a study of robustness in search,” in Proceedings of the 2nd International Conference on Computational Collective Intelligence—Technology and Applications (ICCCI '10), vol. 6422 of Lecture Notes in Artificial Intelligence, pp. 334–343, 2010.
  30. P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo, “Adopt: asynchronous distributed constraint optimization with quality guarantees,” Artificial Intelligence, vol. 161, no. 1-2, pp. 149–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. E. Goldberg and M. P. Samtani, “Engineering optimization via genetic algorithm,” in Proceedings of the 9th Conference on Electronic Computation, pp. 471–484, 1986.
  32. M. R. Ghasemi, E. Hinton, and R. D. Wood, “Optimization of trusses using genetic algorithms for discrete and continuous variables,” Engineering Computations, vol. 16, no. 3, pp. 272–301, 1999. View at Scopus
  33. J. S. Moh and D. Y. Chiang, “Improved simulated annealing search for structural optimization,” AIAA journal, vol. 38, no. 10, pp. 1965–1973, 2000. View at Scopus
  34. K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2-4, pp. 311–338, 2000. View at Scopus
  35. Q. He and L. Wang, “A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1407–1422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. P. Sakthivel, R. Bhuvaneswari, and S. Subramanian, “Design optimization of three-phase energy efficient induction motor using adaptive bacterial foraging algorithm,” The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 29, no. 3, pp. 699–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Kaveh and S. Talatahari, “An amproved ant colony optimization for constrained engineering design problems,” Computer Aided Engineering and Software, vol. 27, no. 1, pp. 155–182, 2010.
  38. S. Bansal, A. Mani, and C. Patvardhan, “Is stochastic ranking really better than feasibility rules for constraint handling in evolutionary algorithms?” in Proceedings of the World Congress on Nature and Biologically Inspired Computing (NABIC '09), pp. 1564–1567, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Gao, H. Li, and Y. C. Jiao, “Modified differential evolution for the integer programming problems,” in Proceedings of International Conference on Artificial Intelligence (AICI '09), pp. 213–219, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Wang and X. Tian, “A hybrid DE-SQP algorithm with switching procedure for dynamic optimization,” in Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 2254–2259, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement learning: a critical survey,” Tech. Rep., Department of Computer Science, Stanford University, Stanford, Calif, USA, 2003.
  42. L. Buşoniu, R. Babuška, and B. De Schutter, “A comprehensive survey of multiagent reinforcement learning,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 38, no. 2, pp. 156–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Bowling and M. Veloso, “Multiagent learning using a variable learning rate,” Artificial Intelligence, vol. 136, no. 2, pp. 215–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Bowling and M. Veloso, “Rational and convergent learning in stochastic games,” in Proceedings of 17th International Conference on Artificial Intelligence, pp. 1021–1026, 2001.
  45. V. Sindhwani, S. S. Keerthi, and O. Chapelle, “Deterministic annealing for semi-supervised kernel machines,” in Proceedings of the 23rd International Conference on Machine Learning (ICML '06), pp. 841–848, June 2006. View at Scopus
  46. A. V. Rao, D. J. Miller, K. Rose, and A. Gersho, “A deterministic annealing approach for parsimonious design of piecewise regression models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 2, pp. 159–173, 1999. View at Scopus
  47. A. V. Rao, D. Miller, K. Rose, and A. Gersho, “Mixture of experts regression modeling by deterministic annealing,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2811–2820, 1997. View at Scopus
  48. R. Czabanski, “Deterministic annealing integrated with intensive learning in neuro-fuzzy systems,” in Proceedings of the 8th International Conference on Artificial Intelligence and Soft Computing, vol. 4029 of Lecture Notes in Artificial Intelligence, pp. 220–229, 2006.
  49. http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helmholtz.html, 2010.
  50. J. S. Arora, Introduction to Optimum Design, Elsevier Academic Press, 2004.
  51. G. N. Vanderplaat, Numerical Optimization Techniques for Engineering Design, Mcgraw-Hill, 1984.
  52. D. F. Zhang and A. S. Deng, “An effective hybrid algorithm for the problem of packing circles into a larger containing circle,” Computers and Operations Research, vol. 32, no. 8, pp. 1941–1951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. V. E. Theodoracatos and J. L. Grimsley, “The optimal packing of arbitrarily-shaped polygons using simulated annealing and polynomial-time cooling schedules,” Computer Methods in Applied Mechanics and Engineering, vol. 125, no. 1–4, pp. 53–70, 1995. View at Scopus
  54. J. Liu, S. Xue, Z. Liu, and D. Xu, “An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle,” Computers and Industrial Engineering, vol. 57, no. 3, pp. 1144–1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Castillo, F. J. Kampas, and J. D. Pintér, “Solving circle packing problems by global optimization: numerical results and industrial applications,” European Journal of Operational Research, vol. 191, no. 3, pp. 786–802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
  57. D. S. Hochbaum and W. Maass, “Approximation schemes for covering and packing problems in image processing and VLSI,” Journal of the Association for Computing Machinery, vol. 1, no. 32, pp. 130–136, 1985.
  58. H. Wang, W. Huang, Q. Zhang, and D. Xu, “An improved algorithm for the packing of unequal circles within a larger containing circle,” European Journal of Operational Research, vol. 141, no. 2, pp. 440–453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. P. G. Szabo, M. C. Markot, and T. Csendes, “Global optimization in geometry—circle packing into the square,” in Essays and Surveys in Global Optimization, P. Audet, P. Hansen, and G. Savard, Eds., pp. 233–265, Kluwer, 2005.
  60. K. J. Nurmela and P. R. J. Östergård, “Packing up to 50 equal circles in a square,” Discrete and Computational Geometry, vol. 18, no. 1, pp. 111–120, 1997. View at Scopus
  61. K. J. Nurmela and P. R. J. Östergård, “More optimal packings of equal circles in a square,” Discrete and Computational Geometry, vol. 22, no. 3, pp. 439–457, 1999. View at Scopus
  62. R. L. Graham and B. D. Lubachevsky, “Repeated patterns of dense packings of equal disks in a square,” Electronic Journal of Combinatorics, vol. 3, no. 1, article R16, pp. 1–17, 1996. View at Scopus
  63. P. G. Szabo, T. Csendes, L. G. Casado, and I. Garcia, “Equal circles packing in a square I—problem setting and bounds for optimal solutions,” in Optimization Theory: Recent Developments from Matrahaza, F. Giannessi, P. Pardalos, and T. Rapcsak, Eds., pp. 191–206, Kluwer, 2001.
  64. C. de Groot, R. Peikert, and D. Wurtz, “The optimal packing of ten equal circles in a square,” PS Research Report 90-12, ETH, Zurich, Switzerland, 1990.
  65. M. Goldberg, “The packing of equal circles in a square,” Mathematics Magazine, vol. 43, pp. 24–30, 1970.
  66. M. Mollard and C. Payan, “Some progress in the packing of equal circles in a square,” Discrete Mathematics, vol. 84, no. 3, pp. 303–307, 1990. View at Scopus
  67. J. Schaer, “On the packing of ten equal circles in a square,” Mathematics Magazine, vol. 44, pp. 139–140, 1971.
  68. K. Schluter, “Kreispackung in quadraten,” Elemente der Mathematics, vol. 34, pp. 12–14, 1979.
  69. G. Valette, “A better packing of ten equal circles in a square,” Discrete Mathematics, vol. 76, no. 1, pp. 57–59, 1989. View at Scopus
  70. D. W. Boll, J. Donovan, R. L. Graham, and B. D. Lubachevsky, “Improving dense packings of equal disks in a square,” Electronic Journal of Combinatorics, vol. 7, no. 1, article R46, pp. 1–9, 2000. View at Scopus
  71. B. D. Lubachevsky and R. L. Graham, “Curved hexagonal packings of equal disks in a circle,” Discrete and Computational Geometry, vol. 18, no. 2, pp. 179–194, 1997. View at Scopus
  72. P. G. Szabo and E. Specht, “Packing up to 200 equal circles in a square,” in Models and Algorithms for Global Optimization, A. Torn and J. Zilinskas, Eds., pp. 141–156, 2007.
  73. N. Mladenovic, F. Plastria, and D. Urosevi, “Formulation space search for circle packing problems,” in Proceedings of the Society of Legal Scholars Annual Conference, Lecture Notes in Computer Science, pp. 212–216, September 2007.
  74. N. Mladenović, F. Plastria, and D. Urošević, “Reformulation descent applied to circle packing problems,” Computers and Operations Research, vol. 32, no. 9, pp. 2419–2434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Huang and M. Chen, “Note on: an improved algorithm for the packing of unequal circles within a larger containing circle,” Computers and Industrial Engineering, vol. 50, no. 3, pp. 338–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Liu, D. Xu, Y. Yao, and Y. Zheng, “Energy landscape paving algorithm for solving circles packing problem,” in Proceedings of the International Conference on Computational Intelligence and Natural Computing (CINC '09), pp. 107–110, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Liu, Y. Yao, Y. Zheng, H. Geng, and G. Zhou, “An effective hybrid algorithm for the circles and spheres packing problems,” in Proceedings of the 3rd Annual International Conference on Combinatorial Optimization and Applications (COCOA '09, vol. 5573 of Lecture Notes in Computer Science, pp. 135–144, June 2009.
  78. Y. G. Stoyan and G. N. Yaskov, “Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints,” International Transactions in Operational Research, vol. 5, pp. 45–57, 1998.
  79. Y. G. Stoyan and G. Yas'kov, “A mathematical model and a solution method for the problem of placing various-sized circles into a strip,” European Journal of Operational Research, vol. 156, no. 3, pp. 590–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. A. George, “Multiple container packing: a case study of pipe packing,” Journal of the Operational Research Society, vol. 47, no. 9, pp. 1098–1109, 1996. View at Scopus
  81. J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized circles into a rectangular container,” European Journal of Operational Research, vol. 84, no. 3, pp. 693–712, 1995. View at Scopus
  82. M. Hifi and R. M'Hallah, “Approximate algorithms for constrained circular cutting problems,” Computers and Operations Research, vol. 31, no. 5, pp. 675–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. View at Scopus
  84. N. F. Wang and K. Tai, “Target matching problems and an adaptive constraint strategy for multiobjective design optimization using genetic algorithms,” Computers and Structures, vol. 88, no. 19-20, pp. 1064–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Y. K. Ng, K. Tai, W. K. Ng, and R. U. Acharya, “Optimization of the pharmacokinetic simulation models for the nanoparticles-in-nanoshapes hybrid drug delivery system using heat diffusion analogy,” in Distributed Diagnosis and Home Healthcare, U. Rajendra Acharya, T. Tamura, E. Y. K. Ng, C. M. Lim, and J. S. Suri, Eds., pp. 211–230, American Scientific Publishers, 2010.