About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2012 (2012), Article ID 560184, 16 pages
http://dx.doi.org/10.1155/2012/560184
Research Article

Using Genetic Algorithms for Navigation Planning in Dynamic Environments

1Center of Research for Advanced Technologies of Informatics and Security (TÜBİTAK BILGEM), 41470 Kocaeli, Turkey
2Computer Engineering Department, Istanbul Technical University, 34469 Istanbul, Turkey

Received 25 April 2012; Revised 29 July 2012; Accepted 31 July 2012

Academic Editor: Tzung P. Hong

Copyright © 2012 Ferhat Uçan and D. Turgay Altılar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Al-Jarrah and M. M. Hasan, “HILS setup of dynamic flight path planning in 3D environment with flexible mission planning using Ground Station,” Journal of the Franklin Institute, vol. 348, no. 1, pp. 45–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Joint Planning and Development Office, “Concept of operations for the next generation air transportation system,” Version 3.0, 2009.
  3. M. T. De Garmo, “Issues concerning integration unmanned aerial vehicles in civil airspace,” Tech. Rep. MP 04W0000323, MITRE, Va, USA, 2004.
  4. R. Weibel and R. J. Hansman, “Safety considerations for operation of unmanned aerial vehicles in the national airspace system,” MIT International Center for Air Transportation Report ICAT, 2005-01, ICAT, 2005.
  5. B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake, “Multiple UAVs path planning algorithms: a comparative study,” Fuzzy Optimization and Decision Making, vol. 7, no. 3, pp. 257–267, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. I. K. Nikolos, N. Tsourveloudis, and K. P. Valavanis, “Evolutionary algorithm based 3-D path planner for UAV navigation,” in Proceedings of the 9th Mediterranean Conference on Control and Automation (CDROM'10), Dubrovnik, Croatia, 2001.
  7. Y. C. Hui, E. C. Prakash, and N. S. Chaudhari, “Game AI: artifical intelligence for 3D path finding,” in Proceedings of the IEEE Region 10 Conference: Analog and Digital Techniques in Electrical Engineering (TENCON'04), pp. B306–B309, tha, November 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Misra and B. J. Oommen, “Stochastic learning automata-based dynamic algorithms for the single source shortest path problem,” in Proceedings of the 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'04), pp. 239–248, May 2004. View at Scopus
  9. Q. Li, W. Zhang, Y. Yin, Z. Wang, and G. Liu, “An improved genetic algorithm of optimum path planning for mobile robots,” in Proceedings of the 6th International Conference on Intelligent Systems Design and Applications (ISDA'06), pp. 637–642, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Tu and S. X. Yang, “Genetic algorithm based path planning for a mobile robot,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1221–1226, Taiwan, September 2003. View at Scopus
  11. W. Wu and Q. Ruan, “A gene-constrained genetic algorithm for solving shortest path problem,” in Proceedings of the 7th International Conference on Signal Processing Proceedings (ICSP'04), pp. 2512–2515, September 2004. View at Scopus
  12. H. Mahjoubi, F. Bahrami, and C. Lucas, “Path planning in an environment with static and dynamic obstacles using genetic algorithm: a simplified search space approach,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC'06), pp. 2483–2489, Vancouver, Canada, July 2006. View at Scopus
  13. J. Inagaki, M. Haseyama, and H. Kitajima, “Genetic algorithm for determining multiple routes and its applications,” in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), pp. I-137–I-140, June 1999. View at Scopus
  14. G. Ramalingam and T. Reps, “On the computational complexity of dynamic graph problems,” Theoretical Computer Science, vol. 158, no. 1-2, pp. 233–277, 1996. View at Scopus
  15. P. G. Franciosa, D. Frigioni, and R. Giaccio, “Semi-dynamic shortest paths and breadth first search in digraphs,” in Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science, pp. 33–46, Lübeck, Germany, 1997. View at Publisher · View at Google Scholar
  16. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully dynamic algorithms for maintaining shortest paths trees,” Journal of Algorithms, vol. 34, no. 2, pp. 251–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Elshamli, H. A. Abdullah, and S. Areibi, “Genetic algorithm for dynamic path planning,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 677–680, May 2004. View at Scopus
  18. D. Catanzaro, M. Labbé, and M. Salazar-Neumann, “Reduction approaches for robust shortest path problems,” Computers and Operations Research, vol. 38, no. 11, pp. 1610–1619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Zheng, L. Li, F. Xu, F. Sun, and M. Ding, “Evolutionary route planner for unmanned air vehicles,” IEEE Transactions on Robotics, vol. 21, no. 4, pp. 609–620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Xiao, F. Xiao, and C. Da, “A genetic-algorithm-based approach to UA V path planning problem,” in Proceedings of the 5th WSEAS International Conference on Simulation, Modelling and Optimization, pp. 17503–19507, Corfu, Greece, August 2005.
  21. S. Li, X. Sun, and Y. Xu, “Particle swarm optimization for route planning of unmanned aerial vehicles,” in Proceedings of the IEEE International Conference on Information Acquisition (ICIA'06), pp. 1213–1218, Shandong, China, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Wang, Q. Li, and L. Guo, “Multiple UAVs routes planning based on particle swarm optimization algorithm,” in Proceedings of the 2nd International Symposium on Information Engineering and Electronic Commerce (IEEC'10), pp. 150–154, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Chitsaz and S. M. LaValle, “Time-optimal paths for a dubins airplane,” in Proceedings of the 46th IEEE Conference on Decision and Control (CDC'07), pp. 2379–2384, New Orleans, La, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Dai and J. E. Cochran, “Path planning for multiple unmanned aerial vehicles by parameterized cornu-spirals,” in Proceedings of the American Control Conference (ACC'09), pp. 2391–2396, St. Louis, Mo, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Shanmugavel, A. Tsourdos, and B. A. White, “Collision avoidance and path planning of multiple UAVs using flyable paths in 3D,” in Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics (MMAR'10), pp. 218–222, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Shanmugavel, A. Tsourdos, B. White, and R. Zbikowski, “Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs,” Control Engineering Practice, vol. 18, no. 9, pp. 1084–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. P. Bhat and P. Kumar, “A feedback guidance strategy for an autonomous mini-air vehicle,” in Proceedings of the National Conference on Control and Dynamical Systems, IIT Bombay, Bombay, India, January 2005.
  28. S. Gualandi and B. Tranchero, “Concurrent constraint programming-based path planning for uninhabited air vehicles,” in Proceedings of the SPIE/Defense and Security Symposium on Unmanned Ground, Ocean, and Air Technologies, pp. 12–16, April 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Ren and R. W. Beard, “Constrained nonlinear tracking control for small fixed-wing unmanned air vehicles,” in Proceedings of the American Control Conference (AAC'04), pp. 4663–4668, Boston, Mass, USA, July 2004. View at Scopus
  30. D. Kingston, Implementation issue of real-time trajectory generation of small UAV [M.S. thesis], Birmingham Young University, 2004.
  31. R. Beard, D. Kingston, M. Quigley et al., “Autonomous vehicle technologies for small fixed-wing UAVs,” Journal of Aerospace Computing, Information and Communication, pp. 92–108, 2005. View at Scopus
  32. C. H. Lin, J. L. Yu, J. C. Liu, and C. J. Lee, “Genetic algorithm for shortest driving time in intelligent transportation systems,” in Proceedings of the International Conference on Multimedia and Ubiquitous Engineering (MUE'08), pp. 402–406, Busan, Korea, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. B. S. Hasan, M. A. Khamees, and A. S. H. Mahmoud, “A heuristic genetic algorithm for the single source shortest path problem,” in Proceedings of the IEEE/ACS International Conference on Computer Systems and Applications (AICCSA'07), pp. 187–194, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Yang, H. Cheng, and F. Wang, “Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 40, no. 1, pp. 52–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Yang, “Population-based incremental learning with memory scheme for changing environments,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'05), pp. 711–718, June 2005. View at Scopus
  36. J. A. Farrell and M. Barth, The Global Positioning System & Inertial Navigation, McGraw Hill, 1999.
  37. “Aerosim Blockset,” Version 1.2, User's Guide, Unmanned Dynamics, LLC.
  38. S. Stolle and R. Rysdyk, “Flight path following guidance for unmanned air vehicles with pan-tilt camera for target observation,” in Proceedings of the 22nd Digital Avionics Systems Conference, pp. 8.B.3/1–8.B.3/12, Indianapolis, Ind, USA, October 2003. View at Scopus
  39. K. Y. Pettersen and E. Lefeber, “Way-point tracking control of ships,” in Proceedings of the 40th IEEE Conference on Decision and Control (CDC'01), pp. 940–945, Orlando, Fla, USA, December 2001. View at Scopus
  40. R. Rysdyk, “UAV Path Following for constant line-of-sight,” in Proceedings of the 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations Aerospace, Land, and Sea Conference, paper no. 6626, San-Diego, Calif, USA, September 2003.
  41. T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation, Oxford University Press, London, UK, 1997.
  42. G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller, “The Gambler's ruin problem, genetic algorithms, and the sizing of populations.,” Evolutionary Computation, vol. 7, no. 3, pp. 231–253, 1999. View at Scopus
  43. C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest path routing problem and the sizing of populations,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 566–579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference (GECCO'06), pp. 1201–1208, July 2006. View at Scopus
  45. P. A. N. Bosman, “Learning, anticipation and time-deception in evolutionary online dynamic optimization,” in Proceedings of the Workshop on Evolutionary Algorithms for Dynamic Optimization (GECCO'05), Washington, DC, USA, 2005.
  46. C. Chitra and P. Subbaraj, “Multiobjective optimization solution for shortest path routing problem,” International Journal of Computer and Information Engineering, vol. 4, no. 2, pp. 77–85, 2010.
  47. R. W. Morrison, Designing Evolutionary Algorithms for Dynamic Environments, Springer, Berlin, Germany, 2004.