About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2012 (2012), Article ID 682372, 11 pages
http://dx.doi.org/10.1155/2012/682372
Research Article

An Entropy-Based Multiobjective Evolutionary Algorithm with an Enhanced Elite Mechanism

Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China

Received 26 December 2011; Accepted 11 June 2012

Academic Editor: Christian W. Dawson

Copyright © 2012 Yufang Qin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization,” in Evolutionary Methods for Design, Optimisation and Control, vol. 3242, pp. 95–100, CIMNE, Barcelona, Spain, 2002.
  3. Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Y. Qu and P. N. Suganthan, “Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection,” Information Sciences, vol. 180, no. 17, pp. 317–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Knowles and D. Corne, “The pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 98–105, IEEE Press, Piscataway, NJ, USA, September 1999.
  6. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000. View at Scopus
  7. K. Deb, M. Mohan, and S. Mishra, “Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions,” Evolutionary Computation, vol. 13, no. 4, pp. 501–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Li, J. Zheng, and G. Xiao, “An efficient multi-objective evolutionary algorithm based on minimum spanning tree,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '08), pp. 617–624, IEEE Computer Society, Hong Kong, China, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Hanne, “A multiobjective evolutionary algorithm for approximating the efficient set,” European Journal of Operational Research, vol. 176, no. 3, pp. 1723–1734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948.
  11. A. Farhang-Mehr and S. Azarm, “Diversity assessment of Pareto optimal solution sets: an entropy approach,” in Proceedings of the of the Congress on Evolutionary Computation, pp. 723–728, 2002.
  12. S. Gunawan, A. Farhang-Mehr, and S. Azarm, Multi-Level Multi-Objective Genetic Algorithm Using Entropy to Preserve Diversity, Springer, Berlin, Germany, 2003.
  13. Y. N. Wang, L. H. Wu, and X. F. Yuan, “Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure,” Soft Computing, vol. 14, no. 3, pp. 193–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Rudolp, “Evolutionary search under paritialy ordered sets,” Tech. Rep. CI-67-99, Department of Computer Science/LS11, University ofDortmund, Dortmund, Germany, 1999.
  15. C. E. Shannon, “A Mathematical theory of communication,” BellSystem Technical Journal, vol. 27, pp. 379-423 and 623–656, 1948.
  16. K. Deb, L. Thiele, M. Laumanns, et al., “Scalable test problems forevoltionary multi-objective optimization,” Tech. Rep., ETH Zurich, Zurich, Switzerland, 2001.
  17. D. A. van Veldhuizen and G. B. Lamont, “Evolutionary computation and convergence to a pareto front,” in Proceedings of the Late Breaking Papers at the Genetic Programming Conference, J. R. Koza, Ed., pp. 221–228, 1998.
  18. J. R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization [M.S. thesis], Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.
  19. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '06), pp. 3234–3240, July 2006. View at Scopus
  20. D. Kalyanmoy and K. Amarendra, “Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems,” Complex Systems, vol. 9, no. 6, pp. 431–454, 1995.
  21. K. Deb and M. A. Goyal, “Combined genetic adaptive search(GeneAs)for engineering design,” Computer Science and Informatics, vol. 26, no. 4, pp. 30–45, 1996.
  22. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test problems,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '02), D. B. Fogel, Ed., pp. 825–830, IEEE Service Center, Piscataway, NJ, USA, 2002.