About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2012 (2012), Article ID 683483, 6 pages
http://dx.doi.org/10.1155/2012/683483
Research Article

A Hybrid Power Series Artificial Bee Colony Algorithm to Obtain a Solution for Buckling of Multiwall Carbon Nanotube Cantilevers Near Small Layers of Graphite Sheets

1Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz 6135743337, Iran
2Engineering Part of Iman Madar Naslaha Co. (IMEN), Ahvaz, Iran

Received 24 April 2012; Revised 13 June 2012; Accepted 17 June 2012

Academic Editor: Erich Klement

Copyright © 2012 Aminreza Noghrehabadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. K. Esawi and M. M. Farag, “Carbon nanotube reinforced composites: potential and current challenges,” Materials and Design, vol. 28, no. 9, pp. 2394–2401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Chowdhury and B. Howard, “Thermo-mechanical properties of graphite-epoxy composite,” International Review of Mechanical Engineering, vol. 4, no. 6, pp. 785–790, 2010. View at Scopus
  3. C. Li, E. T. Thostenson, and T. W. Chou, “Sensors and actuators based on carbon nanotubes and their composites: a review,” Composites Science and Technology, vol. 68, no. 6, pp. 1227–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, “Unusual properties and structure of carbon nanotubes,” Annual Review of Materials Research, vol. 34, pp. 247–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature,” Science, vol. 293, no. 5527, pp. 76–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Grujicic, G. Cao, and W. N. Roy, “Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes,” Journal of Materials Science, vol. 40, no. 8, pp. 1943–1952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Akita, “Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope,” Applied Physics Letters, vol. 79, pp. 1591–1593, 2001.
  8. Y. Cao, Y. Liang, S. Dong, and Y. Wang, “A multi-wall carbon nanotube (MWCNT) relocation technique for atomic force microscopy (AFM) samples,” Ultramicroscopy, vol. 103, no. 2, pp. 103–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Paradise and T. Goswami, “Carbon nanotubes—production and industrial applications,” Materials and Design, vol. 28, no. 5, pp. 1477–1489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. H. Baughman, C. Cui, A. A. Zakhidov et al., “Carbon nanotube actuators,” Science, vol. 284, no. 5418, pp. 1340–1344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. C. H. Ke, N. Pugno, B. Peng, and H. D. Espinosa, “Experiments and modeling of carbon nanotube-based NEMS devices,” Journal of the Mechanics and Physics of Solids, vol. 53, no. 6, pp. 1314–1333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. L. Klimchitskaya, E. V. Blagov, and V. M. Mostepanenko, “Van der Waals and Casimir interactions between atoms and carbon nanotubes,” Journal of Physics A, vol. 41, no. 16, Article ID 164012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Koochi, A. S. Kazemi, A. Noghrehabadi, A. Yekrangi, and M. Abadyan, “New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets,” Materials and Design, vol. 32, no. 5, pp. 2949–2955, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Khan, R. M. A. Zahoor, and I. M. Qureshi, “Swarm Intelligence for the problems of non-linear ordinary differential equations and its application to well known Wessinger's equation,” European Journal of Scientific Research, vol. 34, no. 4, pp. 514–525, 2009. View at Scopus
  15. I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998. View at Scopus
  16. M. Ghalambaz, A. R. Noghrehabadi, M. A. Behrang, E. Assareh, A. Ghanbarzadeh, and N. Hedayat, “A hybrid neural network and gravitational search algorithm (HNNGSA) method to solve well known Wessinger's equation,” Proceedings of World Academy of Science, Engineering and Technology, vol. 73, pp. 803–807, 2011. View at Scopus
  17. A. Noghrehabadi, M. Ghalambaz, and M. Ghalambaz, “A hybrid power series—artificial bee colony to solve magnetohydrodynamic viscous flow over a nonlinear permeable shrinking sheet,” International Review on Modelling and Simulations, vol. 4, no. 5, pp. 2696–2700, 2011.
  18. M. A. Behrang, M. Ghalambaz, E. Assareh, and A. R. Noghrehabadi, “A new solution for natural convection of darcian fluid about a vertical full cone embedded in porous media prescribed wall temperature by using a hybrid neural network-particle swarm optimization method,” World Academy of Science, Engineering and Technology, vol. 73, pp. 1108–1113, 2011.
  19. E. Assareh, M. A. Behrang, M. Ghalambaz, A. R. Noghrehabadi, and A. Ghanbarzadeh, "A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA), vol. 73, World Academy of Science, Engineering and Technology, 2001.
  20. M. Ghalambaz, A. Noghrehabadi, and A. Vosoogh, “A hybrid Power series—Artificial Bee Colony algorithm to solve electrostatic pull-in instability and deflection of nano cantilever actuators considering Casimir Attractions,” International Review of Mechanical Engineering, vol. 5, no. 4, 2011.
  21. A. Yekrangi, M. Ghalambaz, A. Noghrehabadi et al., “Approximate solution for a simple pendulum beyond the small angles regimes using hybrid artificial neural network and particle swarm optimization algorithm,” Procedia Engineering, vol. 10, pp. 3742–3748, 2011.
  22. H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Meade Jr. and A. A. Fernandez, “The numerical solution of linear ordinary differential equations by feedforward neural networks,” Mathematical and Computer Modelling, vol. 19, no. 12, pp. 1–25, 1994. View at Scopus
  24. A. Malek and R. S. Beidokhti, “Numerical solution for high order differential equations using a hybrid neural network—optimization method,” Applied Mathematics and Computation, vol. 183, no. 1, pp. 260–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  26. D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. H. Lin and Y. P. Zhao, “Casimir effect on the pull-in parameters of nanometer switches,” Microsystem Technologies, vol. 11, no. 2-3, pp. 80–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Girifalco, M. Hodak, and R. S. Lee, “Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential,” Physical Review B, vol. 62, no. 19, pp. 13104–13110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Dequesnes, S. V. Rotkin, and N. R. Aluru, “Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches,” Nanotechnology, vol. 13, no. 1, pp. 120–131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Akay and D. Karaboga, “A modified Artificial Bee Colony algorithm for real-parameter optimization,” Information Sciences, vol. 192, pp. 120–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Ascher, R. Mattheij, and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, vol. 13 of SIAM Classics in Applied Mathematics, 1995.
  33. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, Pa, USA, 1998.