About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2012 (2012), Article ID 876230, 8 pages
http://dx.doi.org/10.1155/2012/876230
Research Article

The Fuzzy Economic Order Quantity Problem with a Finite Production Rate and Backorders

1Åbo Akademi University, IAMSR, 20520 Turku, Finland
2Department of Business, Information Technology and Media, Arcada University of Applied Sciences, 00550 Helsinki, Finland

Received 10 October 2011; Accepted 3 January 2012

Academic Editor: Farid Melgani

Copyright © 2012 Kaj-Mikael Björk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. W. Harris, “How many parts to make at once,” The Magazine of Management, vol. 10, pp. 135–136, 1913.
  2. M. J. Liberatore, “The EOQ model under stochastic lead time,” Operations Research, vol. 27, pp. 391–396, 1979.
  3. A. L. Guiffrida, “Fuzzy inventory models,” in Inventory Management: Non-Classical Views, M. Y. Jaber, Ed., chapter 8, pp. 173–198, CRC Press, Boca Raton, Fla, USA, 2009.
  4. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Scopus
  5. L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 1, pp. 28–44, 1973. View at Scopus
  6. L. Y. Ouyang and K. S. Wu, “A minimax distribution free procedure for mixed inventory model with variable lead time,” International Journal of Production Economics, vol. 56-57, pp. 511–516, 1998. View at Scopus
  7. L. Y. Ouyang and J. S. Yao, “A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand,” Computers and Operations Research, vol. 29, no. 5, pp. 471–487, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. Salameh and M. Y. Jaber, “Economic production quantity model for items with imperfect quality,” International Journal of Production Economics, vol. 64, no. 1, pp. 59–64, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. Chang, “An application of fuzzy sets theory to the EOQ model with imperfect quality items,” Computers and Operations Research, vol. 31, no. 12, pp. 2079–2092, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. M. Khan, M. Y. Jaber, A. L. Guiffrida, and S. Zolfaghari, “A review of the extensions of a modified EOQ model for imperfect quality items,” International Journal of Production Economics, vol. 132, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar
  11. M. Y. Jaber, M. Bonney, and I. Moualek, “An economic order quantity model for an imperfect production process with entropy cost,” International Journal of Production Economics, vol. 118, no. 1, pp. 26–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Khan, M. Y. Jaber, and M. I. M. Wahab, “Economic order quantity model for items with imperfect quality with learning in inspection,” International Journal of Production Economics, vol. 124, no. 1, pp. 87–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Khan, M. Y. Jaber, and M. Bonney, “An economic order quantity (EOQ) for items with imperfect quality and inspection errors,” International Journal of Production Economics, vol. 199, no. 1, pp. 113–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Carlsson and R. Fuller, “Soft computing and the Bullwhip effect,” Economics and Complexity, vol. 2, no. 3, pp. 1–26, 1999.
  15. K. M. Björk and C. Carlsson, “The outcome of imprecise lead times on the distributors,” in Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS '05), pp. 81–90, 2005, Track 3.
  16. K. M. Björk, “An analytical solution to a fuzzy economic order quantity problem,” International Journal of Approximate Reasoning, vol. 50, no. 3, pp. 485–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. C. Chang, J. S. Yao, and H. M. Lee, “Economic reorder point for fuzzy backorder quantity,” European Journal of Operational Research, vol. 109, pp. 183–202, 1998.
  18. K.-M. Björk, “A fuzzy economic production quantity problem with back orders,” in Proceedings of the World Conference on Soft Computing (WConSC '11), 2011.
  19. J. S. Yao, L. Y. Ouyang, and H. C. Chang, “Models for a fuzzy inventory of two replaceable merchandises without backorder based on the signed distance of fuzzy sets,” European Journal of Operational Research, vol. 150, no. 3, pp. 601–616, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. J. S. Yao and J. Chiang, “Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance,” European Journal of Operational Research, vol. 148, no. 2, pp. 401–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. K.-M. Björk, “A multi-item fuzzy economic production quantity problem with a finite production rate,” International Journal of Production Economics, vol. 135, no. 2, pp. 702–707, 2012. View at Publisher · View at Google Scholar
  22. L. E. Cárdenas-Barrón, “The economic production quantity (EPQ) with shortage derived algebraically,” International Journal of Production Economics, vol. 70, no. 3, pp. 289–292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. L. E. Cárdenas-Barrón, “An easy method to derive EOQ and EPQ inventory models with backorders,” Computers and Mathematics with Applications, vol. 59, no. 2, pp. 948–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Cárdenas-Barrón, “The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2394–2407, 2011. View at Publisher · View at Google Scholar
  25. N. Kazemi, E. Ehsani, and M. Y. Jaber, “An inventory model with backorders with fuzzy parameters and decision variables,” International Journal of Approximate Reasoning, vol. 51, no. 8, pp. 964–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Yao and K. Wu, “Ranking fuzzy numbers based on decomposition principle and signed distance,” Fuzzy Sets and Systems, vol. 116, pp. 275–288, 2000.