About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2012 (2012), Article ID 897127, 10 pages
http://dx.doi.org/10.1155/2012/897127
Research Article

Particle Swarm Optimization and Bacterial Foraging Optimization Techniques for Optimal Current Harmonic Mitigation by Employing Active Power Filter

Department of Electrical Engineering, National Institute of Technology, Rourkela 769008, India

Received 13 May 2011; Revised 31 July 2011; Accepted 29 August 2011

Academic Editor: Shyi-Ming Chen

Copyright © 2012 Sushree Sangita Patnaik and Anup Kumar Panda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia, December 1995.
  2. P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance differences,” in Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610, New York, NY, USA, 1998.
  3. R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 611–618, New York, NY, USA, 1998.
  4. D. Caputo, F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical swarm optimization of multihop routes in wireless sensor networks,” Applied Computational Intelligence and Soft Computing, vol. 2010, Article ID 523943, 14 pages, 2010. View at Publisher · View at Google Scholar
  5. K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 61–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mishra and C. N. Bhende, “Bacterial foraging technique-based optimized active power filter for load compensation,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 457–465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “A synergy of differential evolution and bacterial foraging optimization for faster global search,” International Journal on Neural and Mass-Parallel Computing and Information Systems, pp. 607–626, 2007.
  9. Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, Anchorage, Alaska, USA, May 1998.
  10. B. Singh, K. Al-Haddad, and A. Chandra, “Review of active filters for power quality improvement,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 960–971, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press/Wiley-Inter-science, NJ, USA, 2007.
  12. V. Soares, P. Verdelho, and G. D. Marques, “An instantaneous active and reactive current component method for active filters,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 660–669, 2000. View at Scopus
  13. M. I. M. Montero, E. R. Cadaval, and F. B. González, “Comparison of control strategies for shunt active power filters in three-phase four-wire systems,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 229–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. H. Zak, Systems and Control, Oxford University Press, New York, NY, USA, 1st edition, 2003.
  15. C. A. Smith and A. B. Corripio, Automatic Processes Control, México D.F., México, 1st edition, 1991.