About this Journal Submit a Manuscript Table of Contents
Applied Computational Intelligence and Soft Computing
Volume 2013 (2013), Article ID 983515, 10 pages
http://dx.doi.org/10.1155/2013/983515
Research Article

Smartphone Homecare Monitoring of Hearts

1Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
2Trident Systems Inc., Fairfax, VA 22030, USA
3Department of Electronic Engineering, Hallym University, Chunsheon-si, Gangwon-do 200-702, Republic of Korea
4BriarTek Incorporated, Alexandria, VA 22035, USA
5OMRON Corp., 9-1 Kizugawadai, Kizugawa-city, Kyoto 619-0283, Japan
6Department of Electrical Engineering and Computer Science, University of Hyogo, 2167 Shosha Himeji, Hyogo 671-2280, Japan

Received 25 May 2012; Accepted 21 October 2012

Academic Editor: Soo-Young Lee

Copyright © 2013 Harold Szu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Homecare monitoring blood pressures and heartbeats are commercially available using dedicated devices, for example, wrist watch, pulse oximetry. With the advent of Smartphone and compressive sensing technology, we wish to monitor precisely the electrical waveforms of heartbeats called the electrocardiography (ECG) for an aging global villager biomedical wellness homecare system. Our design separates into 3 innovative modules within the size-weight and power-cost bandwidth (Swap-CB) limitation. We develop each separately but in concert with one another: (i) Smart Electrode (adopting a low-power-mixed signal embedded with modern compressive sensing firmware and applying the nanotechnology to improve the electrodes’ contact impedance as well as novel transduction mechanism, between ECG and electronics, e.g., a pressure mattress coupling, or fiber-optics coupling); (ii) Learnable Database (utilizing adaptive wavelets transforms for systolic and diastolic P-QRS-T-U features extraction Aided Target Recognition and adopting Sequential Query Language for a relational database allowing distant monitoring and retrievable); (iii) Smartphone (inheriting a large touch screen interface display with powerful computation capability and assisting caretaker reporting system with GPS and ID and two-way interaction with patient panic button for programmable emergence reporting procedure). While (i) is novel, (ii) and (iii) are mature. Together, they can eventually provide a supplementary home screening system for the post- or the prediagnosis care at home with a built-in database searchable with the time, the place, and the degree of urgency happened, using in situ screening.