About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2010 (2010), Article ID 920860, 18 pages
http://dx.doi.org/10.1155/2010/920860
Review Article

Electron-Phonon Interaction in Strongly Correlated Systems

ISC-CNR and Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received 20 January 2010; Accepted 24 April 2010

Academic Editor: Alexandre Sasha Alexandrov

Copyright © 2010 M. Capone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. in Proceedings of the Conference on Lattice Effects in High Temperature Superconductors, Y. Bar-Yam, T. Egami, J. Mustre-de Leon, and A. R. Bishop, Eds., World Scientific, Singapore, 1992.
  2. M. L. Kulić, “Interplay of electron-phonon interaction and strong correlations: the possible way to high-temperature superconductivity,” Physics Report, vol. 338, no. 1-2, pp. 1–264, 2000. View at Scopus
  3. O. Gunnarsson and O. Rösch, “Interplay between electron-phonon and Coulomb interactions in cuprates,” Journal of Physics Condensed Matter, vol. 20, no. 4, Article ID 043201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Falck, A. Levy, M. A. Kastner, and R. J. Birgeneau, “Charge-transfer spectrum and its temperature dependence in La2CuO4,” Physical Review Letters, vol. 69, no. 7, pp. 1109–1112, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Calvani, M. Capizzi, S. Lupi, and G. Belestrino, “Infrared active vibrational modes strongly coupled to carriers in high-Tc superconductors,” Europhysics Letters, vol. 31, p. 473, 1995.
  6. P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone, and P. Roy, “Polaronic optical absorption in electron-doped and hole-doped cuprates,” Physical Review B, vol. 53, no. 5, pp. 2756–2766, 1996. View at Scopus
  7. K. M. Shen, F. Ronning, and F. Ronning, “Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors,” Physical Review Letters, vol. 93, no. 26, Article ID 267002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Lanzara, P. V. Bogdanov, and P. V. Bogdanov, “Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors,” Nature, vol. 412, no. 6846, pp. 510–514, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. Reznik, G. Sangiovanni, O. Gunnarsson, and T. P. Devereaux, “Photoemission kinks and phonons in cuprates,” Nature, vol. 455, no. 7213, pp. E6–E7, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. E. G. Maksimov, M. L. Kulić, and O. V. Dolgov, “Bosonic spectral function and the electron-phonon interaction in HTSC cuprates,” to appear in Advances in Condensed Matter Physics, http://arxiv.org/abs/1001.4859.
  11. J. Lee, K. Fujita, and K. Fujita, “Interplay of electrong-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ,” Nature, vol. 442, no. 7102, pp. 546–550, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. G.-M. Zhao, H. Keller, and K. Conder, “Unconventional isotope effects in the high-temperature cuprate superconductors,” Journal of Physics Condensed Matter, vol. 13, no. 29, pp. R569–R587, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Gurvitch and A. T. Fiory, “Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: absence of saturation and its implications,” Physical Review Letters, vol. 59, no. 12, pp. 1337–1340, 1987. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, “Normal-state transport properties of Bi2+xSr2yCuO6+δ crystals,” Physical Review B, vol. 41, no. 1, pp. 846–849, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck Jr., “Systematic evolution of temperature-dependent resistivity in La2+xSrxCuO4,” Physical Review Letters, vol. 69, no. 20, pp. 2975–2978, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Batlogg, “A critical review of selected experiments in high-Tc superconductivity,” Physica B, vol. 169, no. 1–4, pp. 7–16, 1991. View at Scopus
  17. M. Calandra and O. Gunnarsson, “Electrical resistivity at large temperatures: saturation and lack thereof,” Physical Review B, vol. 66, no. 20, Article ID 205105, 20 pages, 2002. View at Scopus
  18. O. Gunnarsson, “Superconductivity in fullerides,” Reviews of Modern Physics, vol. 69, no. 2, pp. 575–606, 1997. View at Scopus
  19. E. Tosatti, “Physics: fullerides in a squeeze,” Science, vol. 323, no. 5921, pp. 1570–1571, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Y. Ganin, Y. Takabayashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rosseinsky, and K. Prassides, “Bulk superconductivity at 38 K in a molecular system,” Nature Materials, vol. 7, no. 5, pp. 367–371, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. Y. Takabayashi, A. Y. Ganin, and A. Y. Ganin, “The disorder-free non-BCS superconductor CS3C60 emerges from an antiferromagnetic insulator parent state,” Science, vol. 323, no. 5921, pp. 1585–1590, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, “Strongly correlated superconductivity,” Science, vol. 296, no. 5577, pp. 2364–2366, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. T. Holstein, “Studies of polaron motion. Part I. The molecular-crystal model,” Annals of Physics, vol. 8, no. 3, pp. 325–342, 1959. View at Scopus
  24. J. Bonca and S. A. Trugman, “Bipolarons in the extended Holstein Hubbard model,” Physical Review B, vol. 64, no. 9, Article ID 094507, 4 pages, 2001. View at Scopus
  25. J. P. Hague and P. E. Kornilovitch, “Bipolarons from long-range interactions: singlet and triplet pairs in the screened Hubbard-Fröhlich model on the chain,” Physical Review B, vol. 80, no. 5, Article ID 054301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. Alexandrov and P. E. Kornilovitch, “Mobile small polaron,” Physical Review Letters, vol. 82, no. 4, pp. 807–810, 1999. View at Scopus
  27. J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov, “Superlight small bipolarons,” Journal of Physics Condensed Matter, vol. 19, no. 25, Article ID 255214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. M. Hardy, J. P. Hague, J. H. Samson, and A. S. Alexandrov, “Superconductivity in a Hubbard-Fröhlich model and in cuprates,” Physical Review B, vol. 79, no. 21, Article ID 212501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover, New York, NY, USA, 1975.
  30. J. E. Hirsch, “Effect of coulomb interactions on the peierls instability,” Physical Review Letters, vol. 51, no. 4, pp. 296–299, 1983. View at Publisher · View at Google Scholar
  31. J. E. Hirsch, “Phase diagram of the one-dimensional molecular-crystal model with Coulomb interactions: half-filled-band sector,” Physical Review B, vol. 31, no. 9, pp. 6022–6031, 1985. View at Publisher · View at Google Scholar
  32. E. Berger, P. Valášek, and W. von der Linden, “Two-dimensional Hubbard-Holstein model,” Physical Review B, vol. 52, no. 7, pp. 4806–4814, 1995. View at Publisher · View at Google Scholar
  33. Z. B. Huang, W. Hanke, E. Arrigoni, and D. J. Scalapino, “Electron-phonon vertex in the two-dimensional one-band Hubbard model,” Physical Review B, vol. 68, no. 22, Article ID 220507, 4 pages, 2003.
  34. M. Capone, M. Grilli, and W. Stephan, “Small polaron formation in many-particle states of the Hubbard-Holstein model: the one-dimensional case,” European Physical Journal B, vol. 11, no. 4, pp. 551–557, 1999.
  35. G. Wellein, H. Röder, and H. Fehske, “Polarons and bipolarons in strongly interacting electron-phonon systems,” Physical Review B, vol. 53, no. 15, pp. 9666–9675, 1996.
  36. B. Bäumle, G. Wellein, and H. Fehske, “Optical absorption and single-particle excitations in the two-dimensional Holstein t-J model,” Physical Review B, vol. 58, no. 7, pp. 3663–3676, 1998.
  37. A. Weiße, H. Fehske, G. Wellein, and A. R. Bishop, “Optimized phonon approach for the diagonalization of electron-phonon problems,” Physical Review B, vol. 62, no. 2, pp. R747–R750, 2000.
  38. H. Fehske, G. Wellein, G. Hager, A. Weiße, and A. R. Bishop, “Quantum lattice dynamical effects on single-particle excitations in one-dimensional Mott and Peierls insulators,” Physical Review B, vol. 69, no. 16, Article ID 165115, 2004. View at Publisher · View at Google Scholar
  39. E. V. L. de Mello and J. Ranninger, “Dynamical properties of small polarons,” Physical Review B, vol. 55, no. 22, pp. 14872–14885, 1997.
  40. J. K. Freericks and M. Jarrell, “Competition between electron-phonon attraction and weak coulomb repulsion,” Physical Review Letters, vol. 75, no. 13, pp. 2570–2573, 1995. View at Publisher · View at Google Scholar
  41. M. Capone, G. Sangiovanni, C. Castellani, C. Di Castro, and M. Grilli, “Phase separation close to the density-driven Mott transition in the Hubbard-Holstein model,” Physical Review Letters, vol. 92, no. 10, Article ID 106401, 2004. View at Publisher · View at Google Scholar
  42. W. Koller, D. Meyer, Y. Ōno, and A. C. Hewson, “First- and second-order phase transitions in the Holstein-Hubbard model,” Europhysics Letters, vol. 66, no. 4, pp. 559–564, 2004. View at Publisher · View at Google Scholar
  43. W. Koller, D. Meyer, and A. C. Hewson, “Dynamic response functions for the Holstein-Hubbard model,” Physical Review B, vol. 70, no. 15, Article ID 155103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. G. S. Jeon, T.-H. Park, J. H. Han, H. C. Lee, and H.-Y. Choi, “Dynamical mean-field theory of the Hubbard-Holstein model at half filling: zero temperature metal-insulator and insulator-insulator transitions,” Physical Review B, vol. 70, no. 12, Article ID 125114, 2004. View at Publisher · View at Google Scholar
  45. G. Sangiovanni, C. Castellani, and M. Grilli, “Electron-phonon interaction close to a mott transition,” Physical Review Letters, vol. 94, no. 2, Article ID 026401, 2005. View at Publisher · View at Google Scholar
  46. G. Sangiovanni, M. Capone, and C. Castellani, “Relevance of phonon dynamics in strongly correlated systems coupled to phonons: dynamical mean-field theory analysis,” Physical Review B, vol. 73, no. 16, Article ID 165123, 2006. View at Publisher · View at Google Scholar
  47. P. Werner and A. J. Millis, “Efficient dynamical mean field simulation of the holstein-hubbard model,” Physical Review Letters, vol. 99, no. 14, Article ID 146404, 2007. View at Publisher · View at Google Scholar
  48. P. Paci, M. Capone, E. Cappelluti, S. Ciuchi, and C. Grimaldi, “Isotope effects in the Hubbard-Holstein model within dynamical mean-field theory,” Physical Review B, vol. 74, no. 20, Article ID 205108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. MacRidin, B. Moritz, M. Jarrell, and T. Maier, “Synergistic polaron formation in the Hubbard-Holstein model at small doping,” Physical Review Letters, vol. 97, no. 5, Article ID 056402, 2006. View at Publisher · View at Google Scholar
  50. A. Macridin, G. A. Sawatzky, and M. Jarrell, “Two-dimensional Hubbard-Holstein bipolaron,” Physical Review B, vol. 69, no. 24, Article ID 245111, 2004. View at Publisher · View at Google Scholar
  51. E. Jeckelmann, “Mott-Peierls transition in the extended Peierls-Hubbard model,” Physical Review B, vol. 57, no. 19, pp. 11838–11841, 1998.
  52. M. Tezuka, R. Arita, and H. Aoki, “Phase diagram for the one-dimensional Hubbard-Holstein model: a density-matrix renormalization group study,” Physical Review B, vol. 76, no. 15, Article ID 155114, 2007. View at Publisher · View at Google Scholar
  53. M. Grilli and C. Castellani, “Electron-phonon interactions in the presence of strong correlations,” Physical Review B, vol. 50, no. 23, pp. 16880–16898, 1994. View at Publisher · View at Google Scholar
  54. F. Becca, M. Tarquini, M. Grilli, and C. di Castro, “Charge-density waves and superconductivity as an alternative to phase separation in the infinite-U Hubbard-Holstein model,” Physical Review B, vol. 54, no. 17, pp. 12443–12457, 1996.
  55. J. Keller, C. E. Leal, and F. Forsthofer, “Electron-phonon interaction in Hubbard systems,” Physica B, vol. 206-207, pp. 739–741, 1995.
  56. E. Koch and R. Zeyher, “Renormalization of the electron-phonon coupling in the one-band Hubbard model,” Physical Review B, vol. 70, no. 9, Article ID 094510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Cappelluti, B. Cerruti, and L. Pietronero, “Charge fluctuations and electron-phonon interaction in the finite-U Hubbard model,” Physical Review B, vol. 69, no. 16, Article ID 161101, 2004. View at Publisher · View at Google Scholar
  58. M. L. Kulić and R. Zeyher, “Influence of strong electron correlations on the electron-phonon coupling in high-Tc oxides,” Physical Review B, vol. 49, no. 6, pp. 4395–4398, 1994. View at Publisher · View at Google Scholar
  59. R. Zeyher and M. L. Kulić, “Renormalization of the electron-phonon interaction by strong electronic correlations in high-Tc superconductors,” Physical Review B, vol. 53, no. 5, pp. 2850–2862, 1996.
  60. J. Bonca, T. Katracnik, and S. A. Trugman, “Mobile bipolaron,” Physical Review Letters, vol. 84, no. 14, pp. 3153–3156, 2000.
  61. C. A. Perroni, V. Cataudella, G. De Filippis, and V. Marigliano Ramaglia, “Effects of electron-phonon coupling near and within the insulating Mott phase,” Physical Review B, vol. 71, no. 11, Article ID 113107, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Hohenadler, M. Aichhorn, and W. von der Linden, “Single-particle spectral function of the Holstein-Hubbard bipolaren,” Physical Review B, vol. 71, no. 1, Article ID 014302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Hohenadler and W. von der Linden, “Temperature and quantum phonon effects on Holstein-Hubbard bipolarons,” Physical Review B, vol. 71, no. 18, Article ID 184309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Barone, R. Raimondi, M. Capone, C. Castellani, and M. Fabrizio, “Extended Gutzwiller wave function for the Hubbard-Holstein model,” Europhysics Letters, vol. 79, no. 4, Article ID 47003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Barone, R. Raimondi, M. Capone, C. Castellani, and M. Fabrizio, “Gutzwiller scheme for electrons and phonons: the half-filled Hubbard-Holstein model,” Physical Review B, vol. 77, no. 23, Article ID 235115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Di Ciolo, J. Lorenzana, M. Grilli, and G. Seibold, “Charge instabilities and electron-phonon interaction in the Hubbard-Holstein model,” Physical Review B, vol. 79, no. 8, Article ID 085101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Nozières, Theory of Interacting Fermi Systems, Benjamin, New York, NY, USA, 1964.
  68. J. H. Kim and Z. Tesanovic, “Effects of strong Coulomb correlations on the phonon-mediated superconductivity: a model inspired by copper oxides,” Physical Review Letters, vol. 71, p. 4218, 1993.
  69. C. Castellani and M. Grilli, “Comment on effects of strong coulomb correlations on the phonon-mediated superconductivity: a model inspired by copper oxides,” Physical Review Letters, vol. 74, no. 8, p. 1488, 1995. View at Publisher · View at Google Scholar
  70. S. E. Barnes, “New method for the Anderson model,” Journal of Physics F, vol. 6, no. 7, pp. 1375–1383, 1976. View at Publisher · View at Google Scholar
  71. P. Coleman, “New approach to the mixed-valence problem,” Physical Review B, vol. 29, no. 6, pp. 3035–3044, 1984. View at Publisher · View at Google Scholar
  72. N. Read and D. M. Newns, “On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique,” Journal of Physics C, vol. 16, no. 17, pp. 3273–3295, 1983. View at Publisher · View at Google Scholar
  73. N. Read, “Role of infrared divergences in the 1/N expansion of the U= Anderson model,” Journal of Physics C, vol. 18, pp. 2651–2665, 1985.
  74. G. Kotliar and J. Liu, “Superconducting instabilities in the large-U limit of a generalized hubbard model,” Physical Review Letters, vol. 61, no. 15, pp. 1784–1787, 1988. View at Publisher · View at Google Scholar
  75. A. J. Millis and P. A. Lee, “Large-orbital-degeneracy expansion for the lattice Anderson model,” Physical Review B, vol. 35, no. 7, pp. 3394–3414, 1987. View at Publisher · View at Google Scholar
  76. G. Kotliar and A. E. Ruckenstein, “New functional integral approach to strongly correlated fermi systems: the gutzwiller approximation as a saddle point,” Physical Review Letters, vol. 57, no. 11, pp. 1362–1365, 1986. View at Publisher · View at Google Scholar · View at MathSciNet
  77. G. Aprea, C. Di Castro, M. Grilli, and J. Lorenzana, “Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model,” Nuclear Physics B, vol. 744, no. 3, pp. 277–294, 2006. View at Publisher · View at Google Scholar
  78. T. P. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, “Anisotropic electron-phonon interaction in the cuprates,” Physical Review Letters, vol. 93, Article ID 117004, 2004.
  79. C. Castellani and M. Grilli, “The electron-phonon interaction in strongly correlated systems,” in Anharmonic Properties of High-Tc Cuprates, D. Mihailovic, G. Ruani, E. Kaldis, and K. A. Müller, Eds., World Scientific, Singapore, 1995.
  80. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Reviews of Modern Physics, vol. 68, no. 1, pp. 13–125, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  81. J. Bonca and S. A. Trugman, “Mobile bipolaron—strong coupling approach,” Journal of Superconductivity and Novel Magnetism, vol. 13, no. 6, pp. 999–1003, 2000.
  82. A. C. Hewson and D. Meyer, “Numerical renormalization group study of the Anderson-Holstein impurity model,” Journal of Physics Condensed Matter, vol. 14, no. 3, pp. 427–445, 2002. View at Publisher · View at Google Scholar
  83. P. S. Cornaglia, H. Ness, and D. R. Grempel, “Many-body effects on the transport properties of single-molecule devices,” Physical Review Letters, vol. 93, no. 14, Article ID 147201, 2004. View at Publisher · View at Google Scholar
  84. W. Stephan, M. Capone, M. Grilli, and C. Castellani, “Influence of electron-phonon interaction on superexchange,” Physics Letters A, vol. 227, no. 1-2, pp. 120–126, 1997.
  85. S. Lupi, P. Maselli, M. Capizzi, P. Calvani, P. Giura, and P. Roy, “Evolution of a polaron band through the phase diagram of Nd2xCexCuO4y,” Physical Review Letters, vol. 83, no. 23, pp. 4852–4855, 1999.
  86. A. Ramak, P. Horsch, and P. Fulde, “Effective mass of quasiparticles in a t-J model with electron-phonon interactions,” Physical Review B, vol. 46, no. 21, pp. 14305–14308, 1992. View at Publisher · View at Google Scholar
  87. A. S. Mishchenko and N. Nagaosa, “Electron-phonon coupling and a polaron in the t-J model: from the weak to the strong coupling regime,” Physical Review Letters, vol. 93, no. 3, Article ID 036402, 2004. View at Publisher · View at Google Scholar
  88. O. Rösch and O. Gunnarsson, “Apparent electron-phonon interaction in strongly correlated systems,” Physical Review Letters, vol. 93, no. 23, Article ID 237001, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Cappelluti and S. Ciuchi, “Magnetic and lattice polaron in the Holstein t-J model,” Physical Review B, vol. 66, no. 16, Article ID 165102, 2002.
  90. V. Cataudella, G. De Filippis, A. S. Mishchenko, and N. Nagaosa, “Temperature dependence of the angle resolved photoemission spectra in the undoped cuprates: self-consistent approach to the t-J holstein model,” Physical Review Letters, vol. 99, no. 22, Article ID 226402, 2007. View at Publisher · View at Google Scholar
  91. A. S. Mishchenko, N. Nagaosa, and N. Nagaosa, “Charge dynamics of doped holes in high Tc cuprate superconductors: a clue from optical conductivity,” Physical Review Letters, vol. 100, no. 16, Article ID 166401, 2008. View at Publisher · View at Google Scholar
  92. G. Sangiovanni, O. Gunnarsson, E. Koch, C. Castellani, and M. Capone, “Electron-phonon interaction and antiferromagnetic correlations,” Physical Review Letters, vol. 97, no. 4, Article ID 046404, 2006. View at Publisher · View at Google Scholar
  93. C. Castellani, C. Di Castro, and M. Grilli, “Singular quasiparticle scattering in the proximity of charge instabilities,” Physical Review Letters, vol. 75, no. 25, pp. 4650–4653, 1995. View at Publisher · View at Google Scholar
  94. V. J. Emery and S. A. Kivelson, “Frustrated electronic phase separation and high-temperature superconductors,” Physica C, vol. 209, no. 4, pp. 597–621, 1993.
  95. R. Raimondi, C. Castellani, M. Grilli, Y. Bang, and G. Kotliar, “Charge collective modes and dynamic pairing in the three-band Hubbard model. II. Strong-coupling limit,” Physical Review B, vol. 47, no. 6, pp. 3331–3346, 1993. View at Publisher · View at Google Scholar
  96. U. Löw, V. J. Emery, K. Fabricius, and S. A. Kivelson, “Study of an Ising model with competing long- and short-range interactions,” Physical Review Letters, vol. 72, no. 12, pp. 1918–1921, 1994. View at Publisher · View at Google Scholar
  97. J. Lorenzana, C. Castellani, and C. Di Castro, “Phase separation frustrated by the long-range Coulomb interaction. I. Theory,” Physical Review B, vol. 64, no. 23, Article ID 235127, 15 pages, 2001.
  98. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, “Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures,” Physical Review Letters, vol. 82, no. 3, pp. 628–631, 1999.
  99. R. J. McQueeney, J. L. Sarrao, P. G. Pagliuso, P. W. Stephens, and R. Osborn, “Mixed lattice and electronic states in high-temperature superconductors,” Physical Review Letters, vol. 87, no. 7, Article ID 077001, 2001.
  100. L. Pintschovius, N. Pyka, and N. Pyka, “Lattice dynamical studies of HTSC materials,” Physica C, vol. 185–189, pp. 156–161, 1991.
  101. L. Pintschovius and W. Reichardt, “Inelastic Neutron Scattering Studies of the Lattice Vibrations of High-Tc compounds,” in Physical Properties of High Temperature Superconductors IV, P. Ginsberg, Ed., p. 295, World Scientific, Singapore, 1995.
  102. L. Pintschovius and M. Braden, “Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4,” Physical Review B, vol. 60, no. 22, pp. R15039–R15042, 1999.
  103. D. Reznik, L. Pintschovius, and L. Pintschovius, “Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors,” Nature, vol. 440, no. 7088, pp. 1170–1173, 2006. View at Publisher · View at Google Scholar · View at PubMed
  104. D. Reznik, L. Pintschovius, M. Fujita, K. Yamada, G. D. Gu, and J. M. Tranquada, “Electron-phonon anomaly related to charge stripes: static stripe phase versus optimally doped superconducting La1.85Sr0.15CuO4,” Journal of Low Temperature Physics, vol. 147, no. 3-4, pp. 353–364, 2007. View at Publisher · View at Google Scholar
  105. A. Di Ciolo and J. Lorenzana, unpublished.
  106. A. Di Ciolo, J. Lorenzana, M. Grilli, and G. Seibold, unpublished.
  107. M. Capone, M. Fabrizio, and E. Tosatti, “Direct transition between a singlet mott insulator and a superconductor,” Physical Review Letters, vol. 86, no. 23, pp. 5361–5364, 2001. View at Publisher · View at Google Scholar
  108. J. E. Han, O. Gunnarsson, and V. H. Crespi, “Strong superconductivity with local Jahn-Teller phonons in C60 solids,” Physical Review Letters, vol. 90, no. 16, Article ID 167006, 2003.
  109. M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, “Colloquium: modeling the unconventional superconducting properties of expanded A3C60 fullerides,” Reviews of Modern Physics, vol. 81, no. 2, pp. 943–958, 2009. View at Publisher · View at Google Scholar
  110. M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, “Strongly correlated superconductivity and pseudogap phase near a multiband mott insulator,” Physical Review Letters, vol. 93, no. 4, Article ID 047001, 2004. View at Publisher · View at Google Scholar
  111. M. Schiró, M. Capone, M. Fabrizio, and C. Castellani, “Strongly correlated superconductivity arising in a pseudogap metal,” Physical Review B, vol. 77, no. 10, Article ID 104522, 2008. View at Publisher · View at Google Scholar
  112. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Physical Review Letters, vol. 42, no. 25, pp. 1698–1701, 1979. View at Publisher · View at Google Scholar
  113. E. von Oelsen, A. Di Ciolo, J. Lorenzana, G. Seibold, and M. Grilli, “Phonon renormalization from local and transitive electron-lattice couplings in strongly correlated systems,” Physical Review B, vol. 81, no. 155116, 2010.
  114. G. Seibold, J. Lorenzana, and M. Grilli, unpublished.