About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2011 (2011), Article ID 871231, 5 pages
http://dx.doi.org/10.1155/2011/871231
Research Article

On Water Density Fluctuations with Helices of Hydrogen Bonds

Division of Advanced Nuclear Energy Systems, National Research Center “Kurchatov Institute”, 1 Kurchatov Square, Moscow 123182, Russia

Received 29 March 2011; Revised 2 June 2011; Accepted 10 June 2011

Academic Editor: Ivan Smalyukh

Copyright © 2011 Alexander Shimkevich and Inessa Shimkevich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Huang, K. T. Wikfeldt, T. Tokushima et al., “The inhomogeneous structure of water at ambient conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15214–15218, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Wernet, D. Nordlund, U. Bergmann et al., “The structure of the first coordination shell in liquid water,” Science, vol. 304, no. 5673, pp. 995–999, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. Cartlidge, “The strangest liquid,” New Scientist, February 2010.
  4. K. Tuttle, “Researchers rediscover the structure of water,” SLAC Today, February 2010.
  5. T. Tokushima, Y. Harada, O. Takahashi et al., “High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs,” Chemical Physics Letters, vol. 460, no. 4–6, pp. 387–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Smith, C. D. Cappa, B. M. Messer, W. S. Drisdell, R. C. Cohen, and R. J. Saykally, “Probing the local structure of liquid water by X-ray absorption spectroscopy,” Journal of Physical Chemistry B, vol. 110, no. 40, pp. 20038–20045, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. H. A. Stern and B. J. Berne, “Quantum effects in liquid water: path-integral simulations of a flexible and polarizable ab initio model,” Journal of Chemical Physics, vol. 115, no. 16, pp. 7622–7628, 2001. View at Publisher · View at Google Scholar
  8. M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo et al., “Simulating fluid-phase equilibria of water from first principles,” Journal of Physical Chemistry A, vol. 110, no. 2, pp. 640–646, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. J. D. Bernal, “The structure of liquids,” Proceedings of the Royal Society of London. Series A, vol. 280, no. 1382, pp. 299–322, 1964.
  10. Y. Waseda, The structure of non-crystalline materials; liquids and amorphous solids, McGraw-Hill, New York, NY, USA, 1980.
  11. N. N. Medvedev, Voronoy-Delaunay method in research of structure of non-crystalline systems Novosibirsk, Publishing House of the Siberian Branch of the Russian Academy of Science, 2000.
  12. N. P. Smolin, B. R. Gelchinski, A. A. Mirzoev, and E. V. Dyuldina, “The analysis of the short-range-order atomic structure of liquid metals by the Voronoi polyhedron method and a check of the adequacy of the results gained by the RMC method,” Journal of Non-Crystalline Solids, vol. 312–314, pp. 90–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. S. Kolokol, et al., “MD-simulation of liquid metals in the substantiation of a concept for designing liquid metal coolants,” Preprint IAE-6281/11. Moscow, Russia, 2003.
  14. A. S. Kolokol and A. L. Shimkevich, “Topological structure of liquid metals,” Atomic Energy, vol. 98, no. 3, pp. 187–190, 2005. View at Publisher · View at Google Scholar
  15. A. L. Shimkevich, A. S. Kolokol, and I. Yu. Shimkevich, “Two-structure model for simple metals,” Journal of Non-Crystalline Solids, vol. 353, no. 32-40, pp. 3472–3474, 2007. View at Publisher · View at Google Scholar
  16. A. S. Kolokol and A. L. Shimkevich, “Topological structure of density fluctuations in condensed matter,” Journal of Non-Crystalline Solids, vol. 356, no. 4-5, pp. 220–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Shimkevich, “Tetrahedral-chain-cluster model for thermodynamic description of fluids,” in Proceedings of the 16th International Conference on Nuclear Engineering (ICONE '08), Orlando, Fla, USA, 2008, Paper ICONE16-48566.
  18. P. N. Alekseev, et al., “On basic principles for modifying water as a coolant of PWR,” in Transactions of European Nuclear Conference, vol. 4, p. 9, 2010.
  19. R. Roy, W. A. Tiller, I. Bell, and M. R. Hoover, “The structure of liquid water; novel insights from materials research; potential relevance to homeopathy,” Materials Research Innovations, vol. 9, no. 4, pp. 98–103, 2005. View at Scopus
  20. G. Zundel and K. Leberle, “Proton polarizability of poly(L-tyrosine)-hydrogen phosphate hydrogen bonds as a function of alkali cations,” Biopolymers, vol. 23, no. 4, pp. 695–705, 1984. View at Publisher · View at Google Scholar
  21. G. Zundel, “Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology,” Advances in Chemical Physics, vol. 111, pp. 1–217, 2000. View at Scopus
  22. M. Shaikh, J. Mohanty, D. K. Maity, S. K. Nayak, and H. Pal, “Collective proton motion in the intramolecular hydrogen bonding network and the consequent enhancement in the acidity of hydroxycalixarenes,” Journal of Photochemistry and Photobiology A, vol. 195, no. 1, pp. 116–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Careri, “Correlations & conductivity: geometric aspects of physics chemistry and biology,” in Proceedings of the NATO Advanced Study Institute Held at Cargese, Corsica, France, H. Stanley and N. Ostrowsky, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
  24. L. D. Landau and E. M. Lifshits, Electric Dynamics of Condensed Matter, GosTechLit, Moscow, Russia, 1957.
  25. K. Hyeon-Deuk and K. Ando, “Quantum effects of hydrogen atoms on the dynamical rearrangement of hydrogen-bond networks in liquid water,” Journal of Chemical Physics, vol. 132, no. 16, Article ID 164507, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. A. L. Shimkevich, The Composition Principles for Designing Nuclear-Reactor materials, N. N. Ponomarev-Stepnoi, Ed., IzdAt, Moscow, Russia, 2008.