About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2011 (2011), Article ID 989732, 9 pages
http://dx.doi.org/10.1155/2011/989732
Review Article

Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

1Francis Bitter Magnet Laboratory, MIT, 160 Albany Street, Cambridge, MA 02139, USA
2Department of Physics, Ewha Womans University, 11-1 Dae Hyun-Dong, Soe Dae Moon-Gu, Seoul 120-750, Republic of Korea

Received 2 February 2011; Accepted 4 April 2011

Academic Editor: Victor V. Moshchalkov

Copyright © 2011 Jean-Baptiste Laloë et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature, vol. 410, no. 6824, pp. 63–64, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. Musenich, P. Fabbricatore, S. Farinon et al., “The behaviour of cryogen-free MgB2 react and wind coils,” Superconductor Science and Technology, vol. 19, no. 3, pp. S126–S131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. X. H. Li, X. J. Du, M. Qiu, Y. W. Ma, and L. Y. Xiao, “Design and experimental demonstration of an MgB2 based 1.5 T MRI test magnet,” Physica C, vol. 463–465, pp. 1338–1341, 2007. View at Publisher · View at Google Scholar
  4. W. Yao, J. Bascuñán, W. S. Kim, S. Hahn, H. Lee, and Y. Iwasa, “A solid nitrogen cooled MgB2 "demonstration" coil for MRI applications,” IEEE Transactions on Applied Superconductivity, vol. 18, no. 2, pp. 912–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Y. Liu, I. I. Mazin, and J. Kortus, “Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps,” Physical Review Letters, vol. 87, no. 8, Article ID 087005, 4 pages, 2001.
  6. F. Giubileo, D. Roditchev, W. Sacks et al., “Two-gap state density in MgB2: a true bulk property or a proximity effect?” Physical Review Letters, vol. 87, no. 17, Article ID 177008, 4 pages, 2001.
  7. I. I. Mazin, O. K. Andersen, O. Jepsen et al., “Superconductivity in MgB2: clean or dirty?” Physical Review Letters, vol. 89, no. 10, Article ID 107002, 4 pages, 2002.
  8. H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, “The origin of the anomalous superconducting properties of MgB2,” Nature, vol. 418, no. 6899, pp. 758–760, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. I. I. Mazin and V. P. Antropov, “Electronic structure, electron-phonon coupling, and multiband effects in MgB2,” Physica C, vol. 385, no. 1-2, pp. 49–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Moshchalkov, M. Menghini, T. Nishio et al., “Type-1.5 superconductivity,” Physical Review Letters, vol. 102, no. 11, Article ID 117001, 2009. View at Publisher · View at Google Scholar
  11. M. R. Eskildsen, M. Kugler, S. Tanaka et al., “Vortex imaging in the π band of magnesium diboride,” Physical Review Letters, vol. 89, no. 18, Article ID 187003, 4 pages, 2002.
  12. W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, and S. I. Lee, “MgB2 superconducting thin films with a transition temperature of 39 kelvin,” Science, vol. 292, no. 5521, pp. 1521–1523, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. C. B. Eom, M. K. Lee, J. H. Choi et al., “High critical current density and enhanced irreversibility field in superconducting MgB2 thin films,” Nature, vol. 411, no. 6837, pp. 558–560, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Paranthaman, C. Cantoni, H. Y. Zhai et al., “Superconducting MgB2 films via precursor postprocessing approach,” Applied Physics Letters, vol. 78, no. 23, pp. 3669–3671, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. A. Blank, H. Hilgenkamp, A. Brinkman, D. Mijatovic, G. Rijnders, and H. Rogalla, “Superconducting Mg-B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets,” Applied Physics Letters, vol. 79, no. 3, pp. 394–396, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. H. Moon, J. H. Yun, H. N. Lee et al., “High critical current densities in superconducting MgB2 thin films,” Applied Physics Letters, vol. 79, no. 15, pp. 2429–2431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Berenov, Z. Lockman, X. Qi et al., “Growth of strongly biaxially aligned MgB2 thin films on sapphire by postannealing of amorphous precursors,” Applied Physics Letters, vol. 79, no. 24, pp. 4001–4003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. D. Bu, D. M. Kim, J. H. Choi et al., “Synthesis and properties of c-axis oriented epitaxial MgB2 thin films,” Applied Physics Letters, vol. 81, no. 10, Article ID 1851, 3 pages, 2002. View at Publisher · View at Google Scholar
  19. K. Ueda and M. Naito, “As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy,” Applied Physics Letters, vol. 79, no. 13, pp. 2046–2048, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, and R. H. Hammond, “In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy,” Applied Physics Letters, vol. 80, no. 19, Article ID 3563, 3 pages, 2002. View at Publisher · View at Google Scholar
  21. X. Zeng, A. V. Pogrebnyakov, A. Kotcharov et al., “In situ epitaxial MgB2 thin films for superconducting electronics,” Nature Materials, vol. 1, no. 1, pp. 35–38, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. Rowell, “Magnesium diboride: superior thin films,” Nature Materials, vol. 1, no. 1, pp. 5–6, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. X. X. Xi, “Two-band superconductor magnesium diboride,” Reports on Progress in Physics, vol. 71, no. 11, Article ID 116501, 2008. View at Publisher · View at Google Scholar
  24. Y. Cui, K. Chen, Q. Li, X. X. Xi, and J. M. Rowell, “Degradation-free interfaces in MgB2/insulator/Pb Josephson tunnel junctions,” Applied Physics Letters, vol. 89, no. 20, Article ID 202513, 3 pages, 2006. View at Publisher · View at Google Scholar
  25. A. J. M. Van Erven, T. H. Kim, M. Muenzenberg, and J. S. Moodera, “Highly crystallized as-grown smooth and superconducting MgB2 films by molecular-beam epitaxy,” Applied Physics Letters, vol. 81, no. 26, pp. 4982–4984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. H. Kim and J. S. Moodera, “Demonstration of all in situ magnesium diboride superconductor thin-film tunnel junctions,” Applied Physics Letters, vol. 85, no. 3, pp. 434–436, 2004. View at Publisher · View at Google Scholar
  27. G. Carapella, N. Martucciello, G. Costabile, C. Ferdeghini, V. Ferrando, and G. Grassano, “Nb/AlO/Al/MgB2 large area thin films heterostructures: possible observation of tunneling from both dirty and clean limit MgB2,” International Journal of Modern Physics B, vol. 17, no. 4–6, pp. 751–756, 2003.
  28. M. V. Cosatche and J. S. Moodera, “All magnesium diboride Josephson junctions with MgO and native oxide barriers,” Applied Physics Letters, vol. 96, no. 8, Article ID 082508, 3 pages, 2010.
  29. L. Solymar, Superconductive Tunneling and Applications, Wiley-Interscience, New York, NY, USA, 1972.
  30. E. L. Wolf, Principles of Electron Tunneling Spectroscopy, Oxford University Press, New York, NY, USA, 1985.
  31. J. S. Moodera and G. Mathon, “Spin polarized tunneling in ferromagnetic junctions,” Journal of Magnetism and Magnetic Materials, vol. 200, no. 1, pp. 248–273, 1999. View at Publisher · View at Google Scholar
  32. C. Poole, H. A. Farach, and R. J. Creswick, Superconductivity, Academic Press, San Diego, Calif, USA, 1995.
  33. T. V. Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Prentice Hall, Upper Saddle River, NJ, USA, 1998.
  34. T. H. Kim and J. S. Moodera, “Magnesium diboride superconductor thin film tunnel junctions for superconductive electronics,” Journal of Applied Physics, vol. 100, no. 11, Article ID 113904, 2006. View at Publisher · View at Google Scholar
  35. M. Naito, H. Yamamoto, and H. Sato, “Intrinsic problem of cuprate surface and interface: why good tunnel junctions are difficult to fabricate,” Physica C, vol. 335, no. 1, pp. 201–206, 2000. View at Publisher · View at Google Scholar
  36. K. Ueda, S. Saitoo, K. Semba, T. Makimoto, and M. Naito, “All-MgB2 Josephson tunnel junctions,” Applied Physics Letters, vol. 86, no. 17, Article ID 172502, 3 pages, 2005. View at Publisher · View at Google Scholar
  37. R. Gonnello, A. Calzolari, D. Daghero, et al., “Josephson effect in MgB2 break junctions,” Physics Review Letters, vol. 87, no. 9, Article ID 097001, 2001.
  38. H. Shim, K. S. Yoon, J. S. Moodera, and J. P. Hong, “All MgB2 tunnel junctions with Al2O3 or MgO tunnel barriers,” Applied Physics Letters, vol. 90, no. 21, Article ID 212509, 3 pages, 2007.
  39. R. K. Singh, R. Gandikota, J. Kim, N. Newman, and J. M. Rowell, “MgB2 tunnel junctions with native or thermal oxide barriers,” Applied Physics Letters, vol. 89, no. 4, Article ID 042512, 2006. View at Publisher · View at Google Scholar
  40. Y. Shen, R. K. Singh, S. Sanghavi et al., “Characterization of Josephson and quasi-particle currents in MgB2 /MgB2 and Pb/Pb contact junctions,” Superconductor Science and Technology, vol. 23, no. 7, Article ID 075003, 2010. View at Publisher · View at Google Scholar
  41. A. Brinkman, S. H. W. Van Der Ploeg, A. A. Golubov, H. Rogalla, T. H. Kim, and J. S. Moodera, “Charge transport in normal metal-magnesiumdiboride junctions,” Journal of Physics and Chemistry of Solids, vol. 67, no. 1–3, pp. 407–411, 2006. View at Publisher · View at Google Scholar
  42. A.J. Leggett, “Number-phase fluctuations in two-band superconductors,” Progress of Theoretical Physics, vol. 36, pp. 901–930, 1966.
  43. A. A. Golubov, A. Brinkman, Y. Tanaka, I. I. Mazin, and O. V. Dolgov, “Andreev spectra and subgap bound states in multiband superconductors,” Physical Review Letters, vol. 103, no. 7, Article ID 077003, 2009. View at Publisher · View at Google Scholar
  44. W. K. Park and L. H. Greene, “Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn,” Journal of Physics Condensed Matter, vol. 21, no. 10, Article ID 103203, 2009. View at Publisher · View at Google Scholar
  45. S.-W. Cheong and N. Hur, “MgB2 superconductors,” U.S. Patents no. 7,668,578, 2004.
  46. T. G. Ference and K. A. Puzey, “Method of increasing the critical temperature of a high critical temperature superconducting film and a superconducting structure made using the method,” U.S. Patents no. 6,630,426, 2000.
  47. H. Shim and J. S. Moodera, “Josephson junction device for superconductive electronics with a magnesium diboride,” U.S. Patents no. 7,741,634, 2008.
  48. M. Katagiri and M. Ohkubo, “Methods for detecting photons, radiations or neutrons using superconductors and methods for obtaining two-dimensional images thereof,” U.S. Patents no. 7,030,379, 2006.