About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 320612, 29 pages
http://dx.doi.org/10.1155/2012/320612
Review Article

Progress in Dual (Piezoelectric-Magnetostrictive) Phase Magnetoelectric Sintered Composites

1Philips Lumileds Lighting Co., 370 W. Trimble Road, San Jose, CA 95131, USA
2Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Received 26 September 2011; Accepted 2 December 2011

Academic Editor: Vladimir Petrov

Copyright © 2012 Rashed Adnan Islam and Shashank Priya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites,” Journal of Electroceramics, vol. 7, no. 1, pp. 17–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. V. C. Flores, D. B. Baques, D. C. Flores, and J. A. M. Aquino, “Enhanced magnetoelectric effect in core-shell particulate composites,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08J503, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. G. Lupeiko, I. V. Lisnevskaya, M. D. Chkheidze, and B. I. Zvyagintsev, “Laminated magnetoelectric composites based on nickel ferrite and pzt materials,” Inorganic Materials, vol. 31, no. 9, pp. 1139–1142, 1995.
  4. M. Feibig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 38, pp. R123–R152, 2005.
  5. C. Ederer and N. A. Spaldin, “Recent progress in first-principles studies of magnetoelectric multiferroics,” Current Opinion in Solid State & Materials Science, vol. 9, pp. 128–139, 2005.
  6. J. van Suchetelene, “Product properties: a new application of composite materials,” Philips Research Report, vol. 27, no. 3, pp. 28–37, 1972.
  7. G. Smolenskii and V. A. Ioffe, Colloque International du Magnetisme, Communication no. 71, 1958.
  8. J. Wang, J. B. Neaton, H. Zheng et al., “Epitaxial BiFeO,” Science, vol. 299, no. 5613, pp. 1719–1722, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wang, H. Zheng, S. E. Lofland et al., “Multiferroic BaTiO3–CoFe2O4 Nanostructures,” Science, vol. 303, no. 5658, pp. 661–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Ederer and N. A. Spaldin, “A new route to magnetic ferroelectrics,” Nature Materials, vol. 3, no. 12, pp. 849–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature, vol. 429, no. 6990, pp. 392–395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, no. 3, Article ID 031101, 35 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Priya, R. Islam, S. Dong, and D. Viehland, “Recent advancements in magnetoelectric particulate and laminate composites,” Journal of Electroceramics, vol. 19, no. 1, pp. 147–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. R. Harshe, Magnetoelectric effect in piezoelectric—magnetostrictive composite, Ph.D. dissertation, Pennsylvania State University, University Park, Pa, USA, 1991.
  16. J. F. Herbst, T. W. Capehart, and F. E. Pinkerton, “Estimating the effective magnetostriction of a composite: a simple model,” Applied Physics Letters, vol. 70, no. 22, Article ID 3041, 3 pages, 1997. View at Scopus
  17. C. W. Nan, M. Liu, X. Feng, and S. Yu, “Possible giant magnetoelectric effect of ferromagnetic rare-earth-iron-alloys-filled ferroelectric polymers,” Applied Physics Letters, vol. 78, no. 17, Article ID 2527, 3 pages, 2001.
  18. D. N. Astrov, “The magnetoelectric effect in antiferromagnetics,” Soviet Physics, JETP, vol. 11, pp. 708–709, 1960. View at Scopus
  19. D. N. Astrov, B. I. Al’shin, R. V. Zhorin, and L. A. Drobyshev, Soviet Physics, JETP, vol. 28, p. 1123, 1968.
  20. G. Smolenskii and V. A. Ioffe, Colloque International du Magnetisme, Communication, no. 71, 1958.
  21. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature, vol. 426, no. 6962, pp. 55–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field,” Nature, vol. 430, no. 6999, pp. 541–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. B. Van Aken, T. T. A. Palstra, A. Filippetti, and N. A. Spaldin, “The origin of ferroelectricity in magnetoelectric YMnO3,” Nature Materials, vol. 3, no. 3, pp. 164–170, 2004. View at Scopus
  24. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature, vol. 419, no. 6909, pp. 818–820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Zeng, J. G. Wan, Y. Wang et al., “Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite,” Journal of Applied Physics, vol. 95, no. 12, Article ID 8069, 5 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, “Magnetoelectric laminate composites: an overview,” Journal of the American Ceramic Society, vol. 91, no. 2, pp. 351–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Newnham, “Composite Electro ceramics,” Ferroelectrics, vol. 68, no. 1–4, pp. 1–32, 1986.
  28. T. H. Odell, “Magnetoelectrics—a new class of materials,” Electronics and Power, vol. 11, no. 8, pp. 266–267, 1965.
  29. R. E. Newnham, “Composite piezoelectric transducers,” Materials in Engineering, vol. 2, no. 2, pp. 93–106, 1980.
  30. J. V. D. Boomgaard, A. M. J. G. Van Run, and J. Van Suchtelen, “Magnetoelectricity in piezoelectric-magnetostrictive composite,” Ferroelectrics, vol. 10, pp. 295–298, 1976.
  31. J. V. D. Boomgaard and R. A. J. Born, “A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4,” Journal of Materials Science, vol. 13, no. 7, pp. 1538–1548, 1978. View at Publisher · View at Google Scholar · View at Scopus
  32. J. V. D. Van Den Boomgaard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller, “An in situ grown eutectic magnetoelectric composite material—part I Composition and unidirectional solidification,” Journal of Materials Science, vol. 9, no. 10, pp. 1705–1709, 1974. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. J. G. Van Run, D. R. Terrell, and J. H. Scholing, “An in situ grown eutectic magnetoelectric composite material—part 2 Physical properties,” Journal of Materials Science, vol. 9, no. 10, pp. 1710–1714, 1974. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Ryu, S. Priya, K. Uchino, and H.-E. Kim, “High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal 28 and Terfenol-D Laminate Composites,” Journal of the Korean Ceramic Society, vol. 39, pp. 813–817, 2002.
  35. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials,” Journal of Electroceramics, vol. 8, no. 2, pp. 107–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Dong, J. F. Li, and D. Viehland, “Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals,” Applied Physics Letters, vol. 83, no. 11, Article ID 2265, 3 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Dong, J. F. Li, and D. Viehland, “Giant magneto-electric effect in laminate composites,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 10, pp. 1236–1239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, “Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides,” Physical Review B, vol. 64, no. 21, Article ID 214408, 6 pages, 2001.
  39. G. Srinivasan, E. T. Rasmussen, and R. Hayes, “Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites,” Physical Review B, vol. 67, no. 1, Article ID 014418, 11 pages, 2003. View at Scopus
  40. V. M. Laletin, N. Paddubnaya, G. Srinivasan et al., “Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate,” Applied Physics Letters, vol. 87, no. 22, Article ID 222507, 3 pages, 2005. View at Publisher · View at Google Scholar
  41. N. Cai, C.-W. Nan, J. Zhai, and Y. Lin, “Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer,” Applied Physics Letters, vol. 84, no. 18, Article ID 3516, 3 pages, 2004. View at Publisher · View at Google Scholar
  42. S. Dong, J. Zhai, J. Li, and D. Viehland, “Near-ideal magnetoelectricity in high-permeability magnetostrictive/ piezofiber laminates with a (2-1) connectivity,” Applied Physics Letters, vol. 89, no. 25, Article ID 252904, 3 pages, 2006. View at Publisher · View at Google Scholar
  43. S. Dong, J. F. Li, and D. Viehland, “A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminate composite,” Applied Physics Letters, vol. 85, no. 22, Article ID 5305, 2 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J.-P. Zhou, H. He, Z. Shi, and C.-W. Nan, “Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition,” Applied Physics Letters, vol. 88, no. 1, Article ID 013111, 3 pages, 2006. View at Publisher · View at Google Scholar
  45. C. Deng, Y. Zhang, J. Ma, Y. Lin, and C.-W. Nan, “Magnetic-electric properties of epitaxial multiferroic Ni Fe2O4–BaTi O3 heterostructure,” Journal of Applied Physics, vol. 102, no. 7, Article ID 074114, 5 pages, 2007. View at Publisher · View at Google Scholar
  46. H.-C. He, J.-P. Zhou, J. Wang, and C.-W. Nan, “Multiferroic Pb(Zr0.52Ti0.48)O3–Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing,” Applied Physics Letters, vol. 89, no. 5, Article ID 052904, 3 pages, 2006. View at Publisher · View at Google Scholar
  47. H. Ryu, P. Murugavel, J. H. Lee et al., “Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films,” Applied Physics Letters, vol. 89, no. 10, Article ID 102907, 3 pages, 2006. View at Publisher · View at Google Scholar
  48. Y. G. Ma, W. N. Cheng, M. Ning, and C. K. Ong, “Magnetoelectric effect in epitaxial Pb(Zr0.52Ti0.48)O3/La0.7Sr0.3MnO3 composite thin film,” Applied Physics Letters, vol. 90, no. 15, Article ID 152911, 3 pages, 2007. View at Publisher · View at Google Scholar
  49. S. Q. Ren, L. Q. Weng, S.-H. Song, F. Li, J. G. Wan, and M. Zeng, “BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response,” Journal of Materials Science, vol. 40, no. 16, pp. 4375–4378, 2005. View at Publisher · View at Google Scholar
  50. W. E. Kramer, R. H. Hopkins, and M. R. Daniel, “Growth of oxide in situ composites: the systems lithium ferrite-lithium niobate, lithium ferrite-lithium tantalate, and nickel ferrite-barium titanate,” Journal of Materials Science, vol. 12, no. 2, pp. 409–414, 1977. View at Publisher · View at Google Scholar · View at Scopus
  51. B. S. Kang, D. G. Choi, and S. K. Choi, “Effects of grain size on pyroelectric and dielectric properties of Pb0.9La0.1TiO3 ceramic,” Journal of the Korean Physical Society, vol. 32, supplement 1, pp. S232–S234, 1998.
  52. H. T. Martirena and J. C. Burfoot, “Grain-size effects on properties of some ferroelectric ceramics,” Journal of Physics C, vol. 7, no. 17, Article ID 3182, 1974. View at Publisher · View at Google Scholar
  53. S. Choudhury, Y. L. Li, C. Krill, and L. Q. Chen, “Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations,” Acta Materialia, vol. 55, no. 4, pp. 1415–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. H. M. Duiker and P. D. Beale, “Grain-size effects in ferroelectric switching,” Physical Review B, vol. 41, no. 1, pp. 490–495, 1990. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Sundar, N. Kim, C. A. Randall, R. Yimnirun, and R. E. Newnham, “The effect of doping and grain size on electrostriction in PbZr0.52TiO0.48O3,” in Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics (ISAF '96), vol. 2, pp. 935–938, August 1996.
  56. C. J. Lu, S. B. Ren, H. M. Shen, J. S. Liu, and Y. N. Wang, “The effect of grain size on domain structure in unsupported PbTiO3 thin films,” Journal of Physics Condensed Matter, vol. 8, no. 42, pp. 8011–8016, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Sakaki, B. L. Newalkar, S. Komarneni, and K. Uchino, “Grain size dependence of high power piezoelectric characteristics in Nb doped lead zirconate titanate oxide ceramics,” Japanese Journal of Applied Physics 1, vol. 40, no. 12, pp. 6907–6910, 2001.
  58. T. Takeuchi, T. Tani, and Y. Saito, “Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method,” Japanese Journal of Applied Physics 1, vol. 38, no. 9, pp. 5553–5556, 1999. View at Scopus
  59. S. Kwon, E. M. Sabolsky, G. L. Messing, and S. Trolier-McKinstry, “High strain,001 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics:templated grain growth and piezoelectric properties,” Journal of the American Ceramic Society, vol. 88, no. 2, pp. 312–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. J. L. Jones, S. C. Vogel, E. B. Slamovich, and K. J. Bowman, “Quantifying texture in ferroelectric bismuth titanate ceramics,” Scripta Materialia, vol. 51, no. 12, pp. 1123–1127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. R. A. Islam and S. Priya, “Enhanced magnetoelectric effect in (1-x) Pb(Zr0.52Ti0.48)O3xNiFe1.9Mn0.1O4 particulate composites—electrical and magnetic properties,” Integrated Ferroelectrics, vol. 82, no. 1, pp. 1–24, 2006. View at Publisher · View at Google Scholar
  62. R. A. Islam and S. Priya, “Annealing and aging effect in 0.95 Pb(Zr0.52Ti0.48)O3–0.05 NiFe1.9Mn0.1O4 particulate magnetoelectric composites,” Japanese Journal of Applied Physics 2, vol. 45, no. 4–7, pp. L128–L131, 2006. View at Publisher · View at Google Scholar
  63. R. A. Islam and S. Priya, “Synthesis of high magnetoelectric coefficient composites using annealing and aging route,” International Journal of Applied Ceramic Technology, vol. 3, no. 5, pp. 353–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, “Piezoelectric energy harvesting under high pre-stressed cyclic vibrations,” Journal of Electroceramics, vol. 15, no. 1, pp. 27–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. R. A. Islam and S. Priya, “Realization of high-energy density polycrystalline piezoelectric ceramics,” Applied Physics Letters, vol. 88, no. 3, Article ID 032903, 3 pages, 2006. View at Publisher · View at Google Scholar
  66. S. Priya, , Ph.D. dissertation, Pennsylvania State University, University Park, Pa, USA, 2003.
  67. S. Priya and K. Uchino, “Dielectric and piezoelectric properties of the Mn-substituted Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal,” Journal of Applied Physics, vol. 91, no. 7, Article ID 4515, 6 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Priya, K. Uchino, and D. Viehland, “Crystal growth and piezoelectric properties of Mn-substituted Pb(Zn1/3Nb2/3)O3 single crystal,” Japanese Journal of Applied Physics 2, vol. 40, no. 10, pp. L1044–L1047, 2001. View at Scopus
  69. S. Priya, K. Uchino, and D. Viehland, “Fe-substituted 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystals: a “hard” piezocrystal,” Applied Physics Letters, vol. 81, no. 13, Article ID 2430, 3 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Priya and K. Uchino, “High power resonance characteristics and dielectric properties of co-substituted 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal,” Japanese Journal of Applied Physics 1, vol. 42, no. 2, pp. 531–534, 2003.
  71. S. Priya, J. Ryu, K. Uchino, C. W. Ahn, and S. Nahm, “Induction of combinatory characteristics by relaxor modification of Pb(Zr0.5Ti0.5)O3,” Applied Physics Letters, vol. 83, no. 24, Article ID 5020, 3 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. C. A. Randall, N. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, “Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics,” Journal of the American Ceramic Society, vol. 81, no. 3, pp. 677–688, 1998. View at Scopus
  73. K. I. Kobayashi, H. Morinaga, T. Araki, Y. Naka, and T. Oomura, “Low-loss Ni-Zn-Cu ferrite for deflection yoke,” Journal of Magnetism and Magnetic Materials, vol. 104–107, part 1, pp. 413–414, 1992. View at Scopus
  74. I. Z. Rahman, T. T. Ahmed, and L. Powell, “Magnetic and physical characterization of nano granular Ni-Zn-Cu based ferrite powders,” Journal of Metastable and Nanocrystalline Materials, vol. 17, pp. 9–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. W. C. Kim and S. J. Kim, “Magnetic properties of NiZnCu ferrite powders and thin films prepared by a sol-gel method,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2362–2365, 2001. View at Publisher · View at Google Scholar
  76. J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande et al., “Effect of Cu substitution on the magnetic and electrical properties of Ni-Zn ferrite synthesized by soft chemical method,” Materials Chemistry and Physics, vol. 59, no. 1, pp. 1–5, 1999. View at Publisher · View at Google Scholar
  77. T. T. Ahmed, I. Z. Rahman, and M. A. Rahman, “Study on the properties of the copper substituted NiZn ferrites,” Journal of Materials Processing Technology, vol. 153-154, no. 1–3, pp. 797–803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Okamura and Y. Kojima, “Ferromagnetic resonance in copper ferrite,” Physical Review, vol. 86, no. 6, pp. 1040–1041, 1952. View at Publisher · View at Google Scholar · View at Scopus
  79. R. E. Newnham, “Electroceramics,” Reports on Progress in Physics, vol. 52, no. 2, pp. 123–156, 1989. View at Publisher · View at Google Scholar
  80. Z. J. Zhang, Z. L. Wang, B. C. Chakoumakos, and J. S. Yin, “Temperature dependence of cation distribution and oxidation. State in magnetic Mn-Fe ferrite nanocrystals,” Journal of the American Chemical Society, vol. 120, no. 8, pp. 1800–1804, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. R. A. Islam, D. Viehland, and S. Priya, Journal of Materials Science Letters, 2007.
  82. R. A. Islam and S. Priya, Journal of Materials Science Letters, 2007.
  83. R. A. Islam and S. Priya, “Magnetoelectric properties of the lead-free cofired BaTiO3–(Ni0.8Zn0.2)Fe2O4 bilayer composite,” Applied Physics Letters, vol. 89, no. 15, Article ID 152911, 3 pages, 2006. View at Publisher · View at Google Scholar
  84. R. A. Islam, J. Jiang, S. Priya, F. Bai, and D. Viehland, “Correlation between structural deformation and magnetoelectric response in (1-x) Pb (Zr0.52 Ti0.48)O3xNi Fe1.9 Mn0.1O4 particulate composites,” Applied Physics Letters, vol. 91, no. 16, Article ID 162905, 3 pages, 2007. View at Publisher · View at Google Scholar
  85. T. Takeuchi, T. Tani, and Y. Saito, “Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method,” Japanese Journal of Applied Physics 1, vol. 38, no. 9, pp. 5553–5556, 1999.
  86. S. H. Hong, S. T. Trolier-McKinstry, and G. L. Messing, “Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics,” Journal of the American Ceramic Society, vol. 83, no. 1, pp. 113–118, 2000. View at Scopus
  87. A. Moure, L. Pardo, C. Alemany, P. Millán, and A. Castro, “Piezoelectric ceramics based on Bi3TiNbO9 from mechanochemically activated precursors,” Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1399–1402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Allahverdi, A. Hall, R. Brennan, M. E. Ebrahimi, N. M. Hagh, and A. Safari, “An overview of rapidly prototyped piezoelectric actuators and grain-oriented ceramics,” Journal of Electroceramics, vol. 8, no. 2, pp. 129–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Watari, B. Brahmaroutu, G. L. Messing, S. Trolier-McKinstry, and S.-C. Cheng, “Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3,” Journal of Materials Research, vol. 15, no. 4, pp. 846–849, 2000.
  90. E. M. Sabolsky, S. Trolier-McKinstry, and G. L. Messing, “Dielectric and piezoelectric properties of 001 fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics,” Journal of Applied Physics, vol. 93, no. 7, Article ID 4072, 9 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. P. Remeika, Notes, vol. 76, p. 940, 1953.
  92. Y. S. Koo, T. Bonaedy, K. D. Sung et al., “Magnetodielectric coupling in core/shell BaTiO3/γ–Fe2O3 nanoparticles,” Applied Physics Letters, vol. 91, no. 21, Article ID 212903, 3 pages, 2007. View at Publisher · View at Google Scholar
  93. G. Rowlands, “The variation of coercivity with particle size,” Journal of Physics D, vol. 9, no. 8, Article ID 1267, 1976. View at Publisher · View at Google Scholar
  94. K. Uestuener, M. Katter, and W. Rodewald, “Dependence of the mean grain size and coercitivity of sintered Nd-Fe-B magnets on the initial powder particle size,” IEEE Transactions on Magnetics, vol. 42, no. 10, Article ID 2897, 2006.
  95. S. Priya, R. Islam, S. Dong, and D. Viehland, “Recent advancements in magnetoelectric particulate and laminate composites,” Journal of Electroceramics, vol. 19, no. 1, pp. 147–164, 2007. View at Publisher · View at Google Scholar · View at Scopus