About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 615295, 12 pages
http://dx.doi.org/10.1155/2012/615295
Review Article

Anomalous Hall Effect in Geometrically Frustrated Magnets

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

Received 15 October 2011; Revised 21 December 2011; Accepted 22 December 2011

Academic Editor: Charles Rosenblatt

Copyright © 2012 D. Boldrin and A. S. Wills. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman et al., “Spintronics: a spin-based electronics vision for the future,” Science, vol. 294, no. 5546, pp. 1488–1495, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. D. Awschalom and M. E. Flatté, “Challenges for semiconductor spintronics,” Nature Physics, vol. 3, no. 3, pp. 153–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, “Spin chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet,” Science, vol. 291, no. 5513, pp. 2573–2576, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. Tomizawa and H. Kontani, “Anomalous Hall effect due to noncollinearity in pyrochlore compounds: role of orbital Aharonov-Bohm effect,” Physical Review B, vol. 82, no. 10, Article ID 104412, pp. 104412-1–104412-14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Yasui, T. Kageyama, T. Moyoshi, M. Soda, M. Sato, and K. Kakurai, “Studies of anomalous Hall effect and magnetic structure of Nd2Mo2O7 - Test of chirality mechanism,” Journal of the Physical Society of Japan, vol. 75, no. 8, Article ID 084711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, “Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order,” Nature, vol. 463, no. 7278, pp. 210–213, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. Karplus and J. M. Luttinger, “Hall effect in ferromagnetics,” Physical Review, vol. 95, no. 5, pp. 1154–1160, 1954. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Fang, N. Nagaosa, K. S. Takahashi et al., “The anomalous Hall effect and magnetic monopoles in momentum space,” Science, vol. 302, no. 5642, pp. 92–95, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. Y. Machida, S. Nakatsuji, Y. Maeno, T. Tayama, T. Sakakibara, and S. Onoda, “Unconventional anomalous hall effect enhanced by a noncoplanar spin texture in the frustrated kondo lattice Pr2Ir2O7,” Physical Review Letters, vol. 98, no. 5, Article ID 057203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society A, vol. 392, no. 1802, pp. 45–57, 1984. View at Scopus
  11. S. Iguchi, N. Hanasaki, and Y. Tokura, “Scaling of anomalous hall resistivity in Nd2(Mo1-xNbx)2O7 with spin chirality,” Physical Review Letters, vol. 99, no. 7, Article ID 077202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, “Anisotropic hysteretic Hall effect and magnetic control of chiral domains in the chiral spin states of Pr2Ir2O7,” Physical Review Letters, vol. 106, no. 21, Article ID 217204, 2011. View at Publisher · View at Google Scholar
  13. L. A. Fenner, A. A. Dee, and A. S. Wills, “Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2,” Journal of Physics Condensed Matter, vol. 21, no. 45, Article ID 452202, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. T. Kida, L. A. Fenner, A. A. Dee, et al., “The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal,” Journal of Physics, vol. 23, no. 11, Article ID 112205, 2011. View at Publisher · View at Google Scholar · View at PubMed
  15. H. Takatsu, H. Yoshizawa, S. Yonezawa, and Y. Maeno, “Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO2,” Physical Review B, vol. 79, no. 10, Article ID 104424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Takatsu, S. Yonezawa, S. Fujimoto, and Y. Maeno, “Unconventional anomalous hall effect in the metallic triangular-lattice magnet PdCrO2,” Physical Review Letters, vol. 105, no. 13, Article ID 137201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Physical Review, vol. 115, no. 3, pp. 485–491, 1959. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. Y. Maeno, H. Hashimoto, K. Yoshida et al., “Superconductivity in a layered perovskite without copper,” Nature, vol. 372, no. 6506, pp. 532–534, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Longo, P. M. Raccah, and J. B. Goodenough, “Magnetic properties of SrRuO3 and CaRuO3,” Journal of Applied Physics, vol. 39, no. 2, pp. 1327–1328, 1968. View at Publisher · View at Google Scholar · View at Scopus
  20. C. W. Jones, P. D. Battle, P. Lightfoot, et al., “The structure of SrRuO3 by time-of-flight neutron powder diffraction,” Acta Crystallographica C, vol. 45, pp. 365–367, 1989. View at Publisher · View at Google Scholar
  21. J. S. Gardner, G. Balakrishnan, and D. M. Paul, “Neutron powder diffraction studies of Sr2RuO4 and SrRuO3,” Physica C, vol. 252, no. 3-4, pp. 303–307, 1995. View at Scopus
  22. S. N. Bushmeleva, V. Y. Pomjakushin, E. V. Pomjakushina, D. V. Sheptyakov, and A. M. Balagurov, “Evidence for the band ferromagnetism in SrRuO3 from neutron diffraction,” Journal of Magnetism and Magnetic Materials, vol. 305, no. 2, pp. 491–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kiyama, K. Yoshimura, K. Kosuge, Y. Ikeda, and Y. Bando, “Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons,” Physical Review B, vol. 54, no. 2, pp. R756–R759, 1996. View at Scopus
  24. D. J. Singh, “Electronic and magnetic properties of the 4d itinerant ferromagnet SrRuO3,” Journal of Applied Physics, vol. 79, no. 8, pp. 4818–4820, 1996. View at Scopus
  25. P. B. Allen, H. Berger, O. Chauvet et al., “Transport properties, thermodynamic properties, and electronic structure of SrRuO3,” Physical Review B, vol. 53, no. 8, pp. 4393–4398, 1996. View at Scopus
  26. R. Mathieu, A. Asamitsu, H. Yamada et al., “Scaling of the anomalous hall effect in Sr1-xCaxRuO3,” Physical Review Letters, vol. 93, no. 1, Article ID 016602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sato, “Unusual behavior of the anomalous Hall effect of systems with non-trivial magnetic structures,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, pp. 1021–1023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Tomizawa and H. Kontani, “Anomalous Hall effect in the t2g orbital kagome lattice due to noncollinearity: significance of the orbital Aharonov-Bohm effect,” Physical Review B, vol. 80, no. 10, Article ID 100401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Xu, Y. Moritomo, K. Oikawa, T. Kamiyama, and A. Nakamura, “Lattice structural change at ferromagnetic transition in Nd2Mo2O7,” Journal of the Physical Society of Japan, vol. 70, no. 8, pp. 2239–2241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Onoda and N. Nagaosa, “Spin chirality fluctuations and anomalous Hall effect in itinerant ferromagnets,” Physical Review Letters, vol. 90, no. 19, Article ID 196602, 2003. View at Scopus
  31. D. Yanagishima and Y. Maeno, “Metal-nonmetal changeover in pyrochlore iridates,” Journal of the Physical Society of Japan, vol. 70, no. 10, pp. 2880–2883, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Nakatsuji, Y. Machida, Y. Maeno et al., “Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7,” Physical Review Letters, vol. 96, no. 8, Article ID 087204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. D. E. MacLaughlin, Y. Ohta, Y. Machida et al., “Weak quasistatic magnetism in the frustrated Kondo lattice Pr2Ir2O7,” Physica B, vol. 404, no. 5-7, pp. 667–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Le Caer, B. Malaman, and B. Roques, “Mossbauer effect study of Fe3Sn2,” Journal of Physics F, vol. 8, no. 2, pp. 323–336, 1978. View at Publisher · View at Google Scholar · View at Scopus
  35. K. S. Heritage, B. Bryant, Y.-A. Soh, et al., Unpublished work, 2011.
  36. R. D. Shannon, D. B. Rogers, and C. T. Prewitt, “Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds,” Inorganic Chemistry, vol. 10, no. 4, pp. 713–718, 1971. View at Scopus
  37. J.-P. Doumerc, A. Wichainchai, A. Ammar, M. Pouchard, and P. Hagenmuller, “On magnetic properties of some oxides with delafossite-type structure,” Materials Research Bulletin, vol. 21, no. 6, pp. 745–752, 1986. View at Scopus