About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 798310, 12 pages
http://dx.doi.org/10.1155/2012/798310
Review Article

Modeling of Magnetoelectric Interaction in Magnetostrictive-Piezoelectric Composites

Institute of Electronic and Information Systems, Novgorod State University, 173003 Veliky Novgorod, Russia

Received 12 September 2011; Accepted 22 November 2011

Academic Editor: Shashank Priya

Copyright © 2012 M. I. Bichurin and V. M. Petrov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. N. Astrov, “Magnetoelectric effect in chromium oxide,” Journal of Experimental and Theoretical Physics, vol. 13, p. 729, 1961.
  2. J. van den Boomgaard, A. M. J. G. van Run, and J. van Suchtelen, “Piezoelectric-piezomagnetic composites with magnetoelectric effect,” Ferroelectrics, vol. 14, p. 727, 1976.
  3. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites,” Journal of Electroceramics, vol. 7, no. 1, pp. 17–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. V. M. Laletin and G. Srinivasan, “Magnetoelectric effects in composites of nickel ferrite and barium lead zirconate titanate,” Ferroelectrics, vol. 280, pp. 177–185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, Article ID 031101, 35 pages, 2008. View at Publisher · View at Google Scholar
  6. E. Asher, “The interaction between magnetization and polarization: phenomenological symmetry consideration,” Journal of the Physical Society of Japan, vol. 28, no. 7, 1969.
  7. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Yu. I. Bokhan, and V. M. Laletin, “Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides,” Physical Review B - Condensed Matter and Materials Physics, vol. 64, no. 21, pp. 2144081–2144086, 2001.
  8. S. Dong, J. Zhai, F. Bai, J. -F. Li, and D. Viehland, “Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient,” Applied Physics Letters, vol. 87, no. 6, article 062502, 2005. View at Publisher · View at Google Scholar
  9. S. Dong, J. Zhai, J. Li, and D. Viehland, “Near-ideal magnetoelectricity in high-permeability magnetostrictive/ piezofiber laminates with a (2-1) connectivity,” Applied Physics Letters, vol. 89, no. 25, article 252904, 2006. View at Publisher · View at Google Scholar
  10. G. Harshe, J. P. Dougherty, and R. E. Newnham, “Theoretical modelling of multilayer magnetoelectric composites,” International Journal of Applied Electromagnetics in Materials, vol. 4, no. 2, pp. 145–159, 1993. View at Scopus
  11. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, “Modeling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composites,” Ferroelectrics, vol. 280, pp. 165–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, “Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites,” Journal of Applied Physics, vol. 92, no. 12, pp. 7681–7683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, “Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers,” Physical Review B, vol. 68, no. 5, Article ID 054402, pp. 544021–5440213, 2003. View at Scopus
  14. V. M. Petrov, G. Srinivasan, M. I. Bichurin, and T. A. Galkina, “Theory of magnetoelectric effect for bending modes in magnetostrictive- piezoelectric bilayers,” Journal of Applied Physics, vol. 105, no. 6, Article ID 063911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Ramirez, “Colossal magnetoresistance,” Journal of Physics Condensed Matter, vol. 9, no. 39, pp. 8171–8199, 1997. View at Scopus
  16. I. A. Osaretin and R. G. Rojas, “Theoretical model for the magnetoelectric effect in magnetostrictive/ piezoelectric composites,” Physical Review B, vol. 82, no. 17, Article ID 174415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. E. Newnham, D. P. Skinner, and L. E. Cross, “Connectivity and piezoelectric-pyroelectric composites,” Materials Research Bulletin, vol. 13, no. 5, pp. 525–536, 1978. View at Scopus
  18. G. Harshe, J. P. Dougherty, and R. E. Newnham, “Theoretical modelling of 3-0/0-3 magnetoelectric composites,” International Journal of Applied Electromagnetics in Materials, vol. 4, no. 2, pp. 161–171, 1993. View at Scopus
  19. V. M. Petrov, M. I. Bichurin, V. M. Laletin, N. Paddubnaya, and G. Srinivasan, Magnetoelectric Interaction Phenomena in Crystals-NATO Science Series II, vol. 164, Kluwer Academic Publishers, London, UK, 2004, Edited By, M. Fiebig, V. V. Eremenko, and I. E. Chupis.
  20. G. Srinivasan, C. P. de Vreugd, V. M. Laletin et al., “Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: the influence of bias magnetic field,” Physical Review B, vol. 71, no. 18, article 184423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya, and G. Srinivasan, “Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites,” Physical Review B - Condensed Matter and Materials Physics, vol. 68, no. 13, Article ID 132408, pp. 1324081–1324084, 2003. View at Scopus
  22. V. M. Petrov, M. I. Bichurin, and G. Srinivasan, “Electromechanical resonance in ferrite-piezoelectric nanopillars, nanowires, nanobilayers, and magnetoelectric interactions,” Journal of Applied Physics, vol. 107, no. 7, Article ID 073908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. Bichurin, V. M. Petrov, S. V. Averkin, and A. V. Filippov, “Electromechanical resonance in magnetoelectric layered structures,” Physics of the Solid State, vol. 52, no. 10, pp. 2116–2122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. M. Petrov, M. I. Bichurin, V. V. Zibtsev, S. K. Mandal, and G. Srinivasan, “Flexural deformation and bending mode of magnetoelectric nanobilayer,” Journal of Applied Physics, vol. 106, no. 11, Article ID 113901, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. I. Bichurin, V. M. Petrov, S. V. Averkin, and E. Liverts, “Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges,” Journal of Applied Physics, vol. 107, no. 5, Article ID 053904, 2010. View at Publisher · View at Google Scholar · View at Scopus