About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 902812, 7 pages
http://dx.doi.org/10.1155/2012/902812
Research Article

Chemical Phase Separation of Superconductive and Ferromagnetic Domains in

Department of Physics, Faculty of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan

Received 19 September 2012; Accepted 12 December 2012

Academic Editor: Cong Wang

Copyright © 2012 Takahiro Yamazaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. He, Q. Huang, A. P. Ramirez et al., “Superconductivity in the non-oxide perovskite MgCNi3,” Nature, vol. 411, no. 6833, pp. 54–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Ronser, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti:, “Superconductivity near Ferromagnetism in MgCNi3,” Physical Review Letters, vol. 88, no. 2, Article ID 027001, 2002. View at Publisher · View at Google Scholar
  3. P. M. Singer, T. Imai, T. He, M. A. Hayward, and R. J. Cava, “13C NMR investigation of the superconductor MgCNi3 up to 800 K,” Physical Review Letters, vol. 87, no. 25, Article ID 257601, 2001. View at Scopus
  4. J.-Y. Lin, P. L. Ho, H. L. Huang, et al., “BCS-like superconductivity in MgCNi3,” Physical Review B, vol. 67, Article ID 052501, 4 pages, 2003. View at Publisher · View at Google Scholar
  5. Z. Q. Mao, M. M. Rosario, K. D. Nelson et al., “Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3,” Physical Review B, vol. 67, Article ID 0945021, 2003.
  6. L. Shan, K. Xia, Z. Y. Liu, et al., “Influence of carbon concentration on the superconductivity in MgCxNi3,” Physical Review B, vol. 68, no. 2, Article ID 024523, 5 pages, 2003. View at Publisher · View at Google Scholar
  7. L. Shan, H. J. Tao, H. Gao, et al., “s-wave pairing in MgCNi3 revealed by point contact tunneling,” Physical Review B, vol. 68, no. 14, Article ID 144510, 5 pages, 2003.
  8. R. Prozorov, A. Snezhko, T. He, and R. J. Cava, Physical Review B, vol. 68, Article ID 1805021, 2003.
  9. D. P. Young, M. Moldovan, and P. W. Adams:, “Scaling behavior of the critical current density in MgCNi3 microfibers,” Physical Review B, vol. 70, no. 6, Article ID 064508, 2004. View at Publisher · View at Google Scholar
  10. A. Wälte, G. Fuchs, K. H. Müller, et al., “Evidence for strong electron-phonon coupling in MgCNi3,” Physical Review B, vol. 70, no. 17, Article ID 174503, 18 pages, 2004.
  11. L. Shan, Z. Y. Liu, Z. A. Ren, G. C. Che, and H. H. Wen, “Competition between BCS superconductivity and ferromagnetic spin fluctuations in MgCNi3,” Physical Review B, vol. 71, no. 14, Article ID 144516, 6 pages, 2005. View at Publisher · View at Google Scholar
  12. M. Uehara, T. Yamazaki, T. Kôri, T. Kashida, Y. Kimishima, and K. Ohishi, “Magnetism on Mg1-xZnxCyNi3,” Journal of Physics and Chemistry of Solids, vol. 68, no. 11, pp. 2178–2182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Diener, P. Rodière, T. Klein et al., “S-wave superconductivity probed by measuring magnetic penetration depth and lower critical field of MgCNi3 single crystals,” Physical Review B, vol. 79, no. 22, Article ID 220508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Pribulová, J. Kačmarčík, C. Marcenat, et al., “Superconducting energy gap in MgCNi3 single crystals: point-contact spectroscopy and specific-heat measurements,” Physical Review B, vol. 83, no. 10, Article ID 104511, 7 pages, 2011. View at Publisher · View at Google Scholar
  15. M. S. Park, J. S. Giim, S. H. Park, Y. W. Lee, S. I. Lee, and E. J. Choi, “Physical properties of ZnCNi3: comparison with superconducting MgCNi3,” Superconductor Science and Technology, vol. 17, no. 2, pp. 274–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Uehara, T. Amano, S. Takano, T. Kôri, T. Yamazaki, and Y. Kimishima, “Chemical pressure effect on the superconductor MgCNi3,” Physica C, vol. 440, no. 1-2, pp. 6–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Uehara, T. Yamazaki, T. Kôri, T. Kashida, Y. Kimishima, and I. Hase, “Superconducting properties of CdCNi3,” Journal of the Physical Society of Japan, vol. 76, Article ID 0347141, 5 pages, 2007. View at Publisher · View at Google Scholar
  18. F. R. de Boer, C. J. Schinkel, J. Biesterbos, and S. Proost, “Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; Giant moment inducement in Fe-doped Ni3Ga,” Journal of Applied Physics, vol. 40, no. 3, pp. 1049–1055, 1969. View at Publisher · View at Google Scholar · View at Scopus
  19. A. F. Dong, G. C. Che, W. W. Huang, S. L. Jia, H. Chen, and Z. X. Zhao, “Synthesis and physical properties of AlCNi3,” Physica C, vol. 422, no. 1-2, pp. 65–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, “Synthesis and physical properties of antiperovskite-type compound In0.95CNi3,” Solid State Communications, vol. 141, no. 6, pp. 336–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song:, “Strong electron-electron correlation in the antiperovskite compound GaCNi3,” Physical Review B, vol. 73, Article ID 2451061, 2006.
  22. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, “Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3,” Physical Review B, vol. 74, no. 22, Article ID 224416, 7 pages, 2006. View at Publisher · View at Google Scholar
  23. W. H. Cao, B. He, C. Z. Liao, L. H. Yang, L. M. Zeng, and C. Dong:, “Preparation and properties of antiperovskite-type nitrides: InNNi3 and InNCo3,” Journal of Solid State Chemistry, vol. 182, no. 12, pp. 3353–3357, 2009. View at Publisher · View at Google Scholar
  24. B. He, C. Dong, L. Yang, L. Ge, and H. Chen, “Preparation and physical properties of antiperovskite-type compounds CdNCoCdNCo3zNiz0z3,” Journal of Solid State Chemistry, vol. 184, no. 8, pp. 1939–1945, 2011. View at Publisher · View at Google Scholar
  25. B. He, C. Dong, L. Yang, L. Ge, L. Mu, and C. Chen, “Preparation and the physical properties of antiperovskite-type compounds Cd1−x InxNNi3 (0x0.2) and Cd1−yCuyNNi3 (0y0.2),” Chinese Physics B, vol. 21, no. 4, Article ID 047401, 2012. View at Publisher · View at Google Scholar
  26. M. Y. Duan, J. J. Tan, G. F. Ji, X. R. Chen, and J. Zhu, “Elastic and Thermodynamic Properties of Anti-Perovskite Type Superconductor MCNi3 (M = Zn, Cd),” Acta Physica Polonica A, vol. 118, p. 652, 2010.
  27. M. D. Johannes and W. E. Pickett, “Electronic structure of ZnCNi3,” Physical Review B, vol. 70, no. 6, Article ID 060507, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Joseph and P. P. Singh, “A first-principles comparison of the electronic properties of MgCyNi3 and ZnCyNi3 alloys,” Journal of Physics: Condensed Matter, vol. 18, no. 23, p. 5333, 2006. View at Publisher · View at Google Scholar
  29. M. Sieberer, P. Mohn, and J. Redinger, “Role of carbon in AlCNi3 and GaCNi3: a density functional theory study,” Physical Review B, vol. 75, no. 2, Article ID 024431, 2007. View at Publisher · View at Google Scholar
  30. I. R. Shein, V. V. Bannikov, and A. L. Ivanovskii, “Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi3, ZnCNi3 and CdCNi3 from first principles,” Physica C, vol. 468, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar
  31. S. Bağcı, S. Duman, H. M. Tütüncü, and G. P. Srivastava, “Ground state, phonon spectrum, and superconducting properties of the nonoxide perovskite CdCNi3,” Physical Review B, vol. 78, no. 17, Article ID 174504, 6 pages, 2008. View at Publisher · View at Google Scholar
  32. C. Li, W. G. Chen, F. Wang, et al., “Epitaxial growth of fcc-CoxNi100−x thin films on MgO(110) single-crystal substrates,” Journal of Applied Physics, vol. 105, no. 12, Article ID 123921, 4 pages, 2009. View at Publisher · View at Google Scholar
  33. S. Q. Wu, Z. F. Hou, and Z. Z. Zhu, “Elastic properties and electronic structures of CdCNi3: a comparative study with MgCNi3,” Solid State Sciences, vol. 11, no. 1, pp. 251–258, 2009. View at Publisher · View at Google Scholar
  34. M. Uehara, A. Uehara, K. Kozawa, and Y. Kimishima, “New antiperovskite-type superconductor ZnNyNi3,” Journal of the Physical Society of Japan, vol. 78, no. 3, Article ID 033702, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, and Y. Kimishima, “New antiperovskite superconductor ZnNNi3, and related compounds CdNNi3 and InNNi3,” Physica C, vol. 470, no. 1, pp. S688–S690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. H. Stadelmaier and T. S. Yun, “Alloys of nitorgen and the transition metals Mn, Fe, Co and Ni with Mg, Al, Zn and Cd,” Zeitschrift für Metallkunde, vol. 52, pp. 477–480, 1961.
  37. R. Juza and W. Sachze, “Zur Kenntnis des Systems Nickel/Stickstoff. Metallamide und Metallnitride, 12. Mitt,” Zeitschrift für anorganische und allgemeine Chemie, vol. 251, no. 2, pp. 201–212, 1943. View at Publisher · View at Google Scholar
  38. N. Saegusa, T. Tsukagoshi, E. Kita, and A. Tasaki, “Magnetic properties of iron-nitride particles prepared with gas evaporation method,” IEEE Transactions on Magnetics, vol. 19, no. 5, pp. 1629–1631, 1983. View at Scopus
  39. H. Jacobs, D. Rechenbach, and U. Zachwieja, “Structure determination of γ′-Fe4N and ε-Fe3N,” Journal of Alloys and Compounds, vol. 227, no. 1, pp. 10–17, 1995. View at Scopus
  40. M. Uehara, K. Kozawa, M. Ohashi, et al., “Ni-site doping effect of new antiperovskite superconductor ZnNNi3,” Journal of Physics: Conference Series, vol. 400, part 2, Article ID 022128, 2012. View at Publisher · View at Google Scholar