About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 903239, 9 pages
http://dx.doi.org/10.1155/2012/903239
Review Article

Research Progress on Ni-Based Antiperovskite Compounds

P. Tong1 and Y. P. Sun1,2

1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

Received 19 September 2012; Accepted 5 December 2012

Academic Editor: Laifeng Li

Copyright © 2012 P. Tong and Y. P. Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba–La–Cu–O system,” Zeitschrift für Physik B, vol. 64, no. 2, pp. 189–193, 1986.
  2. T. He, Q. Huang, A. P. Ramirez et al., “Superconductivity in the non-oxide perovskite MgCNi3,” Nature, vol. 411, no. 6833, pp. 54–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti, “Superconductivity near ferromagnetism in MgCNi3,” Physical Review Letters, vol. 88, no. 2, Article ID 027001, pp. 270011–270014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Singh and I. I. Mazin, “Superconductivity and electronic structure of perovskite MgCNi3,” Physical Review B, vol. 64, no. 14, Article ID 140507, pp. 1405071–1405074, 2001. View at Scopus
  5. J. H. Shim, S. K. Kwon, and B. I. Min, “Electronic structures of antiperovskite superconductors MgxNi3 (X = B, C, and N),” Physical Review B, vol. 64, no. 18, Article ID 180510, pp. 1805101–1805104, 2001. View at Scopus
  6. P. M. Singer, T. Imai, T. He, M. A. Hayward, and R. J. Cava, “13C NMR investigation of the superconductor MgCNi3 up to 800 K,” Physical Review Letters, vol. 87, no. 25, Article ID 257601, pp. 257601/1–257601/4, 2001. View at Scopus
  7. R. Prozorov, A. Snezhko, T. He, and R. J. Cava, “Evidence for unconventional superconductivity in the nonoxide perovskite MgCNi3 from penetration depth measurements,” Physical Review B, vol. 68, no. 18, Article ID 180502, pp. 1805021–1805024, 2003. View at Scopus
  8. X. F. Lu, L. Shan, Z. Wang et al., “Evidence for s-wave pairing from measurement of the lower critical field in MgCNi3,” Physics Review B, vol. 71, no. 18, Article ID 174511, 2005.
  9. D. P. Young, M. Moldovan, and P. W. Adams, “Scaling behavior of the critical current density in MgCNi3 microfibers,” Physical Review B, vol. 70, no. 6, Article ID 064508, pp. 064508–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Q. Mao, M. M. Rosario, K. D. Nelson et al., “Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3,” Physical Review B, vol. 67, no. 9, Article ID 094502, pp. 945021–945026, 2003. View at Scopus
  11. L. Shan, H. J. Tao, H. Gao et al., “s-wave pairing in MgCNi3 revealed by point contact tunneling,” Physical Review B, vol. 68, no. 14, Article ID 144510, pp. 1445101–1445105, 2003. View at Scopus
  12. T. Klimczuk and R. J. Cava, “Carbon isotope effect in superconducting MgCNi3,” Physical Review B, vol. 70, no. 21, Article ID 212514, pp. 1–3, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-Y. Lin, P. L. Ho, H. L. Huang et al., “BCS-like superconductivity in MgCNi3,” Physical Review B, vol. 67, no. 5, Article ID 052501, pp. 525011–525014, 2003. View at Scopus
  14. A. Wälte, G. Fuchs, K. H. Müller et al., “Evidence for strong electron-phonon coupling in MgCNi3,” Physical Review B, vol. 70, no. 17, Article ID 174503, pp. 1–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. J. MacDougall, R. J. Cava, S. J. Kim et al., “Muon spin rotation study of MgCNi3,” Physica B, vol. 374-375, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mollah, “The physics of the non-oxide perovskite superconductor MgCNi3,” Journal of Physics Condensed Matter, vol. 16, no. 43, pp. R1237–R1276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-S. Lee, D. J. Jang, H. G. Lee, S. I. Lee, S. M. Choi, and C. J. Kim, “Growth of single crystals of MgCNi3,” Advanced Materials, vol. 19, no. 14, pp. 1807–1809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-S. Lee, D. J. Jang, H. G. Lee, W. Kang, M. H. Cho, and S. I. Lee, “Evidence of conventional superconductivity in single-crystalline MgCNi 3,” Journal of Physics Condensed Matter, vol. 20, no. 25, Article ID 255222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Kačmarcík, Z. Pribulov, C. Marcenat et al., “Specific heat of superconducting MgCNi3 single crystals,” Journal of Physics, vol. 150, no. 5, Article ID 052087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Pribulová, J. Kačmarčík, C. Marcenat et al., “Superconducting energy gap in MgCNi3 single crystals: Point-contact spectroscopy and specific-heat measurements,” Physical Review B, vol. 83, no. 10, Article ID 104511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Diener, P. Rodière, T. Klein et al., “s-wave superconductivity probed by measuring magnetic penetration depth and lower critical field of MgCNi3 single crystals,” Physical Review B, vol. 79, no. 22, Article ID 220508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Hong, M. Upton, A. H. Said et al., “Phonon dispersions and anomalies of MgCNi3 single-crystal superconductors determined by inelastic x-ray scattering,” Physical Review B, vol. 82, no. 13, Article ID 134535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. K. Jha, S. D. Gupta, and S. K. Gupta, “Puzzling phonon dispersion curves and vibrational mode instability in superconducting MgCNi3,” AIP Advances, vol. 2, no. 2, Article ID 022120, 2012.
  24. D.-J. Jang, H. S. Lee, H. G. Lee, M. H. Cho, and S. I. Lee, “Collapse of the peak effect due to ac-induced flux creep in an isotropic vortex system of MgCNi3 single crystals,” Physical Review Letters, vol. 103, no. 4, Article ID 047003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. R. Shein and A. L. Ivanovskii, “Electronic and elastic properties of non-oxide anti-perovskites from first principles: Superconducting CdCNi3 in comparison with magnetic InCNi3,” Physics Review B, vol. 77, no. 10, Article ID 104101, 2008. View at Publisher · View at Google Scholar
  26. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, “Synthesis and physical properties of antiperovskite-type compound In0.95CNiM3,” Solid State Communications, vol. 141, no. 6, pp. 336–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Uehara, T. Yamazaki, T. Kôri, T. Kashida, Y. Kimishima, and I. Hase, “Superconducting properties of CdCNi3,” Journal of the Physical Society of Japan, vol. 76, no. 3, Article ID 034714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Bağcı, S. Duman, H. M. Tütüncü, and G. P. Srivastava, “Ground state, phonon spectrum, and superconducting properties of the nonoxide perovskite CdCNi3,” Physics Review B, vol. 78, no. 17, Article ID 174504, 2008.
  29. M. S. Park, J. S. Giim, S. H. Park, Y. W. Lee, S. I. Lee, and E. J. Choi, “Physical properties of ZnCNi3: Comparison with superconducting MgCNi3,” Superconductor Science and Technology, vol. 17, no. 2, pp. 274–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Johannes and W. E. Pickett, “Electronic structure of ZnCNi3,” Physical Review B, vol. 70, no. 6, pp. 060507–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, “Strong electron-electron correlation in the antiperovskite compound GaCNi3,” Physical Review B, vol. 73, no. 24, Article ID 245106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, “Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3,” Physics Review B, vol. 74, no. 22, Article ID 224416, 2006.
  33. B. Chen, C. Michioka, Y. Itoh, and K. Yoshimura, “Synthesis and magnetic properties of Ni3AlCx,” Journal of the Physical Society of Japan, vol. 77, no. 10, Article ID 103708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Chen, H. Ohta, C. Michioka, Y. Itoh, and K. Yoshimura, “27Al NMR studies of itinerant electron ferromagnetic Ni3 AlCx,” Physical Review B, vol. 81, no. 13, Article ID 134416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. F. Dong, G. C. Che, W. W. Huang, S. L. Jia, H. Chen, and Z. X. Zhao, “Synthesis and physical properties of AlCNi3,” Physica C, vol. 422, no. 1-2, pp. 65–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. M. I. Okoye, “Theoretical investigation of electronic structure and optical properties of paramagnetic non-oxide perovskite AlCNi3,” Solid State Communications, vol. 136, no. 11-12, pp. 605–610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sieberer, P. Mohn, and J. Redinger, “Role of carbon in AlCNi3 and GaCNi3: a density functional theory study,” Physics Review B, vol. 75, no. 2, Article ID 024431, 2007.
  38. G. H. Zhong, J. L. Wang, Z. Zeng, X. H. Zheng, and H. Q. Lin, “Induced effects by the substitution of Mg in MgCNi3,” Journal of Applied Physics, vol. 101, no. 9, Article ID 09G520, 2007.
  39. F. Boutaiba, A. Zaoui, and M. Ferhat, “Ground state analysis of XCNi3 (X=Mg, Zn, and Ga) from first-principles,” Physica B, vol. 406, no. 2, pp. 265–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Q. Wu, Z. F. Hou, and Z. Z. Zhu, “Electronic structure and magnetic state of InCNi3,” Physica B, vol. 403, no. 23-24, pp. 4232–4235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Uehara, A. Uehara, K. Kozawa, and Y. Kimishima, “New antiperovskite-type superconductor ZnNyNi3,” Journal of the Physical Society of Japan, vol. 78, no. 3, pp. 0337021–0337024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. I. R. Shein, V. V. Bannikov, and A. L. Ivanovskii, “Elastic and electronic properties of the new perovskite-like superconductor ZnNNi3 in comparison with MgCNi3,” Physica Status Solidi B, vol. 247, no. 1, pp. 72–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, and Y. Kimishima, “New antiperovskite superconductor ZnNNi3, and related compounds CdNNi3 and InNNi3,” Physica C, vol. 470, no. 1, pp. S688–S690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Li, W. G. Chen, F. Wang et al., “First-principles investigation of mechanical and electronic properties of MNNi3 (M=Zn, Mg, or Cd),” Journal of Applied Physics, vol. 105, no. 12, Article ID 123921, 2009.
  45. Z. F. Hou, “Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3,” Solid State Communications, vol. 150, no. 39-40, pp. 1874–1879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. B. He, C. Dong, L. H. Yang, L. H. Ge, L. B. Mu, and X. C. Chen, “Preparation and the physical properties of antiperovskite-type compounds Cd1-xInxNNi3 (0x0.2) and Cd1-yCuyNNi3 (0y0.2),” Chinese Physics B, vol. 21, no. 4, Article ID 047401, 2012.
  47. T. Shishido, K. Kudou, T. Sasaki et al., “Search for perovskite-type new borides in the Sc-TM-B (TM = Ti, V, Cr, Mn, Fe, Co, and Ni) systems,” Journal of Alloys and Compounds, vol. 383, no. 1-2, pp. 294–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Tong, Study on the physical properties of nickel based antiperovskite compounds [Ph.D. thesis], 2007.
  49. I. R. Shein, A. L. Ivanovskii, and N. I. Medvedeva, “Electronic structure of the new MgCNi3 superconductor and related intermetallic compounds,” JETP Letters, vol. 74, no. 2, pp. 122–127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Hase, “Ni3AlB: A bridge between superconductivity and ferromagnetism,” Physics Review B, vol. 70, no. 3, Article ID 033105, 2004.
  51. I. Hase, “Electronic structure of Ni3AlXy (X = B, C, H; 0<y<1),” Materials Transactions, vol. 47, no. 3, pp. 475–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. H. V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, “Fermi-liquid instabilities at magnetic quantum phase transitions,” Reviews of Modern Physics, vol. 79, no. 3, pp. 1015–1075, 2007. View at Publisher · View at Google Scholar · View at Scopus