About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 906598, 8 pages
http://dx.doi.org/10.1155/2012/906598
Research Article

Comparison of Constitutive Relationships for Dilute Granular Flow in a Vibrofluidized Cell

Department of Mechanical Engineering, Muhammad Ali Jinnah University, Islamabad, Pakistan

Received 22 February 2012; Revised 19 April 2012; Accepted 20 April 2012

Academic Editor: Nigel Wilding

Copyright © 2012 Nadeem Ahmed Sheikh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials, Springer, 13th edition, 2000.
  2. P. Evesque, “Shaking dry powders and grains,” Contemporary Physics, vol. 33, no. 4, pp. 245–261, 1992.
  3. Z. Farkas, P. Tegzes, A. Vukics, and T. Vicsek, “Transitions in the horizontal transport of vertically vibrated granular layers,” Physical Review E, vol. 60, no. 6 B, pp. 7022–7031, 1999. View at Scopus
  4. C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield,” Journal of Fluid Mechanics, vol. 140, pp. 223–256, 1984. View at Scopus
  5. P. K. Haff, “Grain flow as a fluid-mechanical phenomenon,” Journal of Fluid Mechanics, vol. 134, pp. 401–430, 1983. View at Scopus
  6. J. T. Jenkins and M. W. Richman, “Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,” Physics of Fluids, vol. 28, no. 12, pp. 3485–3494, 1985. View at Scopus
  7. V. Kumaran, “Kinetic theory for a vibro-fluidized bed,” Journal of Fluid Mechanics, vol. 364, pp. 163–185, 1998. View at Scopus
  8. J. M. Montanero, V. Garzó, A. Santos, and J. J. Brey, “Kinetic theory of simple granular shear flows of smooth hard spheres,” Journal of Fluid Mechanics, vol. 389, pp. 391–411, 1999. View at Scopus
  9. T. W. Martin, J. M. Huntley, and R. D. Wildman, “Hydrodynamic model for a vibrofluidized granular bed,” Journal of Fluid Mechanics, vol. 535, pp. 325–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. D. Wildman, T. W. Martin, J. M. Huntley et al., “Experimental investigation and kinetic-theory-based model of a rapid granular shear flow,” Journal of Fluid Mechanics, vol. 602, pp. 63–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Huntley, T. W. Martin, M. D. Mantle et al., “NMR measurements and hydrodynamic simulations of phase-resolved velocity distributions within a three-dimensional vibrofluidized granular bed,” Proceedings of the Royal Society A, vol. 463, no. 2086, pp. 2519–2542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Garzó, J. W. Dufty, and C. M. Hrenya, “Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport,” Physical Review E, vol. 76, no. 3, Article ID 031303, p. 031303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Goldshtein and M. Shapiro, “Mechanics of collisional motion of granular materials—part 1. General hydrodynamic equations,” Journal of Fluid Mechanics, vol. 282, pp. 75–114, 1995. View at Scopus
  14. A. Goldshtein, M. Shapiro, L. Moldavsky, and M. Fichman, “Mechanics of collisional motion of granular materials—part 2. Wave propagation through vibrofluidized granular layers,” Journal of Fluid Mechanics, vol. 287, pp. 349–382, 1995. View at Scopus
  15. X. Yang and D. Candela, “Potential energy in a three-dimensional vibrated granular medium measured by NMR imaging,” Physical Review Letters, vol. 85, no. 2, pp. 298–301, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Warr, J. M. Huntley, and G. T. H. Jacques, “Fluidization of a two-dimensional granular system: experimental study and scaling behavior,” Physical Review E, vol. 52, no. 5, pp. 5583–5595, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ramírez, D. Risso, and P. Cordero, “Thermal convection in fluidized granular systems,” Physical Review Letters, vol. 85, no. 6, pp. 1230–1233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Goldshtein, V. Kamenetsky, A. Potapov, M. Shapiro, C. Campbell, and D. Degani, “Hydrodynamics of rapid granular flow of inelastic particles into vacuum,” Granular Matter, vol. 4, no. 3, pp. 115–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Bougie, S. J. Moon, J. B. Swift, and H. L. Swinney, “Shocks in vertically oscillated granular layers,” Physical Review E, vol. 66, no. 5, Article ID 051301, p. 051301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. H. Liu and S. R. Nagel, “Sound in sand,” Physical Review Letters, vol. 68, no. 15, pp. 2301–2304, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Nedderman, Statics and Kinematics of Granular Materials, Cambridge University Press, 1992.
  22. S. Serna and A. Marquina, “Capturing shock waves in inelastic granular gases,” Journal of Computational Physics, vol. 209, no. 2, pp. 787–795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. T. Jenkins and M. W. Richman, “Boundary conditions for plane flows of smooth, nearly elastic, circular disks,” Journal of Fluid Mechanics, vol. 171, pp. 53–69, 1986. View at Scopus
  24. A. Goldshtein, M. Shapiro, and C. Gutfinger, “Mechanics of collisional motion of granular materials—part 4. Expansion wave,” Journal of Fluid Mechanics, vol. 327, pp. 117–138, 1996. View at Scopus
  25. N. F. Carnahan and K. E. Starling, “Equation of state for nonattracting rigid spheres,” The Journal of Chemical Physics, vol. 51, no. 2, pp. 635–636, 1969. View at Scopus
  26. S. Torquato, “Nearest-neighbor statistics for packings of hard spheres and disks,” Physical Review E, vol. 51, no. 4, pp. 3170–3182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Garzó and J. W. Dufty, “Dense fluid transport for inelastic hard spheres,” Physical Review E, vol. 59, no. 5, pp. 5895–5911, 1999. View at Scopus
  28. J. J. Brey, J. W. Dufty, and A. Santos, “Kinetic models for granular flow,” Journal of Statistical Physics, vol. 97, no. 1-2, pp. 281–322, 1999. View at Scopus
  29. J. T. Jenkins and M. Y. Louge, “On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall,” Physics of Fluids, vol. 9, no. 10, pp. 2835–2840, 1997. View at Scopus
  30. R. D. Wildman, T. W. Martin, P. E. Krouskop, J. Talbot, J. M. Huntley, and D. J. Parker, “Convection in vibrated annular granular beds,” Physical Review E, vol. 71, no. 6, Article ID 061301, p. 061301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Viswanathan, N. A. Sheikh, R. D. Wildman, and J. M. Huntley, “Convection in three-dimensional vibrofluidized granular beds,” Journal of Fluid Mechanics, vol. 682, pp. 185–212, 2011.
  32. C. Huan, X. Yang, D. Candela, R. W. Mair, and R. L. Walsworth, “NMR experiments on a three-dimensional vibrofluidized granular medium,” Physical Review E, vol. 69, no. 4, Article ID 041302, 13 pages, 2004. View at Publisher · View at Google Scholar