About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 913168, 7 pages
http://dx.doi.org/10.1155/2012/913168
Research Article

Origin of the Giant Negative Thermal Expansion in

1Department of Physics, University of Science and Technology of China, Anhui, Hefei 230026, China
2Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Anhui, Hefei 230026, China

Received 16 June 2012; Accepted 11 September 2012

Academic Editor: Koshi Takenaka

Copyright © 2012 B. Y. Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. W. Sleight, “Compounds that contract on heating,” Inorganic Chemistry, vol. 37, no. 12, pp. 2854–2860, 1998. View at Scopus
  2. G. D. Barrera, J. A. O. Bruno, T. H. K. Barron, and N. L. Allan, “Negative thermal expansion,” Journal of Physics Condensed Matter, vol. 17, no. 4, pp. R217–R252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Fruchart and E. F. Bertaut, “Magnetic studies of the metallic perovskite-type compounds of manganese,” Journal of the Physical Society of Japan, vol. 44, no. 3, pp. 781–791, 1978. View at Scopus
  4. W. S. Kim, E. O. Chi, J. C. Kim, N. H. Hur, K. W. Lee, and Y. N. Choi, “Cracks induced by magnetic ordering in the antiperovskite ZnNMn3,” Physical Review B, vol. 68, no. 17, Article ID 172402, 4 pages, 2003. View at Scopus
  5. D. Fruchart, E. F. Bertaut, R. Madar, G. Lorthioir, and R. Fruchart, “Structure magnetique et rotation de spin de Mn3NiN,” Solid State Communications, vol. 9, no. 21, pp. 1793–1797, 1971. View at Scopus
  6. K. Takenaka and H. Takagi, “Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides,” Applied Physics Letters, vol. 87, no. 26, Article ID 261902, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takenaka, K. Asano, M. Misawa, and H. Takagi, “Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect,” Applied Physics Letters, vol. 92, no. 1, Article ID 011927, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sun, C. Wang, Y. Wen, K. Zhu, and J. Zhao, “Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN,” Applied Physics Letters, vol. 91, no. 23, Article ID 231913, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Huang, L. Li, F. Cai, X. Xu, and L. Qian, “Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si,” Applied Physics Letters, vol. 93, no. 8, Article ID 081902, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. S. Wang, P. Tong, Y. P. Sun et al., “Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn3-xNix (x = 0.05, 0.10),” Applied Physics Letters, vol. 95, no. 22, Article ID 222509, 3 pages, 2009. View at Publisher · View at Google Scholar
  11. R. J. Huang, W. Xu, X. D. Xu, L. F. Li, X. Q. Pan, and D. Evans, “Negative thermal expansion and electrical properties of Mn3(Cu0.6NbxGe0.4 - x)N (x=0.050.25) compounds,” Materials Letters, vol. 62, no. 16, pp. 2381–2384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Matsuno, K. Takenaka, H. Takagi, D. Matsumura, Y. Nishihata, and J. Mizuki, “Local structure anomaly around Ge dopantsin Mn3Cu0.7Ge0.3N with negative thermal expansion,” Applied Physics Letters, vol. 94, no. 18, Article ID 181904, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, “Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN,” Physical Review Letters, vol. 101, no. 20, Article ID 205901, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Kodama, S. Iikubo, K. Takenaka, M. Takigawa, H. Takagi, and S. Shamoto, “Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x~0.5),” Physical Review B, vol. 81, no. 22, Article ID 224419, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996. View at Scopus
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Scopus
  18. G. Ernst, C. Broholm, G. R. Kowach, and A. P. Ramirez, “Phonon density of states and negative thermal expansion in ZrW2O8,” Nature, vol. 396, no. 6707, pp. 147–149, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Wang and R. R. Reeber, “Mode Grüneisen parameters and negative thermal expansion of cubic ZrW2O8 and ZrMo2O8,” Applied Physics Letters, vol. 76, no. 16, pp. 2203–2204, 2000. View at Scopus
  20. K. Takenaka and H. Takagi, “Magnetovolume effect and negative thermalexpansion in Mn3(Cu1-xGex)N,” Materials Transactions, vol. 47, no. 3, pp. 471–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, and S. Shamoto, “Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure: neutron powder diffraction measurements,” Physical Review B, vol. 77, no. 2, Article ID 020409, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. M. Rosengaard and B. Johansson, “Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni,” Physical Review B, vol. 55, no. 22, pp. 14975–14986, 1997. View at Scopus
  23. Y. M. Zhou, D. S. Wang, and Y. Kawazoe, “Effective ab initio exchange integrals and magnetic phase transition in fcc Fe and Mn antiferromagnets,” Physical Review B, vol. 59, no. 13, pp. 8387–8390, 1999. View at Scopus
  24. J. T. Wang, L. Zhou, D. S. Wang, and Y. Kawazoe, “Exchange interaction and magnetic phase transition in layered Fe/Au(001) superlattices,” Physical Review B, vol. 62, no. 5, pp. 3354–3360, 2000. View at Scopus
  25. X. Gao, Y. M. Zhou, and D. S. Wang, “Analysis of the determination of magnetic phase transition temperatures by the first-principles calculations,” Journal of Magnetism and Magnetic Materials, vol. 251, no. 1, pp. 29–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Y. Qu, H. Y. He, and B. C. Pan, “The elastic properties of Mn3(Cu1-xGex)N compounds,” AIP Advances, vol. 1, no. 4, Article ID 042125, 8 pages, 2011. View at Publisher · View at Google Scholar