About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 136274, 7 pages
http://dx.doi.org/10.1155/2013/136274
Research Article

Structural, Elastic, and Electronic Properties of Antiperovskite Chromium-Based Carbides ACCr3 (A = Al and Ga)

1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

Received 29 October 2012; Accepted 24 December 2012

Academic Editor: Laifeng Li

Copyright © 2013 D. F. Shao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. He, Q. Huang, A. P. Ramirez et al., “Superconductivity in the non-oxide perovskite MgCNi3,” Nature, vol. 411, no. 6833, pp. 54–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Uehara, T. Yamazaki, T. Kôri, T. Kashida, Y. Kimishima, and I. Hase, “Superconducting properties of CdCNi3,” Journal of the Physical Society of Japan, vol. 76, no. 3, Article ID 034714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Uehara, A. Uehara, K. Kozawa, and Y. Kimishima, “New antiperovskite-type superconductor ZnNyNi3,” Journal of the Physical Society of Japan, vol. 78, no. 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kamishima, T. Goto, H. Nakagawa et al., “Giant magnetoresistance in the intermetallic compound Mn3GaC,” Physical Review B, vol. 63, no. 2, Article ID 024426, 2001. View at Scopus
  5. Y. B. Li, W. F. Li, W. J. Feng, Y. Q. Zhang, and Z. D. Zhang, “Magnetic, transport and magnetotransport properties of Mn3+xSn1-xC and Mn3ZnySn1-yC compounds,” Physical Review B, vol. 72, no. 2, Article ID 024411, 2005. View at Publisher · View at Google Scholar
  6. T. Tohei, H. Wada, and T. Kanomata, “Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC,” Journal of Applied Physics, vol. 94, no. 3, pp. 1800–1802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Yu, L. H. Lewis, and A. R. Moodenbaugh, “Large magnetic entropy change in the metallic antiperovskite Mn3GaC,” Journal of Applied Physics, vol. 93, no. 12, pp. 10128–10130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Takenaka and H. Takagi, “Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides,” Applied Physics Letters, vol. 87, no. 26, Article ID 261902, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Takenaka, K. Asano, M. Misawa, and H. Takagi, “Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect,” Applied Physics Letters, vol. 92, no. 1, Article ID 011927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Asano, K. Koyama, and K. Takenaka, “Magnetostriction in Mn3 CuN,” Applied Physics Letters, vol. 92, no. 16, Article ID 161909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. O. Chi, W. S. Kim, and N. H. Hur, “Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3,” Solid State Communications, vol. 120, no. 7-8, pp. 307–310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Lin, B. S. Wang, P. Tong et al., “Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3,” Scripta Materialia, vol. 65, no. 5, pp. 452–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. B. T. Matthias, T. H. Geballe, V. B. Compton, E. Corenzwit, and G. W. Hull, “Superconductivity of chromium alloys,” Physical Review, vol. 128, no. 2, pp. 588–590, 1962. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Nishihara, Y. Yamaguchi, T. Kohara, and M. Tokumoto, “Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys,” Physical Review B, vol. 31, no. 9, pp. 5775–5781, 1985. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Nishihara, Y. Yamaguchi, M. Tokumoto, K. Takeda, and K. Fukamichi, “Superconductivity and magnetism of bcc Cr-Ru alloys,” Physical Review B, vol. 34, no. 5, pp. 3446–3449, 1986. View at Publisher · View at Google Scholar · View at Scopus
  16. H. L. Alberts, D. S. McLachlan, T. Germishuyse, and M. Naidoo, “Superconductivity and antiferromagnetism in Cr-Mo-Ru alloys,” Journal of Physics, vol. 3, no. 12, pp. 1793–1800, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Wiendlocha, J. Tobola, S. Kaprzyk, and D. Fruchart, “Electronic structure, superconductivity and magnetism study of Cr3GaN and Cr3RhN,” Journal of Alloys and Compounds, vol. 442, no. 1-2, pp. 289–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. M. Tütüncü and G. P. Srivastava, “Phonons and superconductivity in the cubic perovskite Cr3RhN,” Journal of Applied Physics, vol. 112, no. 9, Article ID 093914, 2012. View at Publisher · View at Google Scholar
  19. P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24, pp. 17953–17979, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze, “Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure,” Computational Materials Science, vol. 42, no. 2, pp. 337–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Gonze, J. M. Beuken, R. Caracas et al., “First-principles computation of material properties: the ABINIT software project,” Computational Materials Science, vol. 25, no. 3, pp. 478–492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Gonze, B. Amadon, P. M. Anglade et al., “ABINIT: first-principles approach to material and nanosystem properties,” Computer Physics Communications, vol. 180, no. 12, pp. 2582–2615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Gonze, G. M. Rignanese, M. Verstraete et al., “A brief introduction to the ABINIT software package,” Zeitschrift fur Kristallographie, vol. 220, no. 5-6, pp. 558–562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Scopus
  25. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Birch, “Finite elastic strain of cubic crystals,” Physical Review, vol. 71, no. 11, pp. 809–824, 1947. View at Publisher · View at Google Scholar · View at Scopus
  27. F. D. Murnaghan, Finite Deformation of An Elastic Solid, Dover Publications, New York, NY, USA, 1951.
  28. J. Zhao, J. M. Winey, and Y. M. Gupta, “First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry,” Physical Review B, vol. 75, no. 9, Article ID 094105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Hill, “The elastic behaviour of a crystalline aggregate,” Proceedings of the Physical Society A, vol. 65, no. 5, pp. 349–354, 1952. View at Publisher · View at Google Scholar · View at Scopus
  30. D. C. Wallace, Thermodynamics of Crystals, John Wiley & Sons, New York, NY, USA, 1972.
  31. D. J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, Cambridge, UK, 1998.
  32. R. E. Newnham, Properties of Materials; Anisotropy, Symmetry, Structure, Oxford University Press, New York, NY, USA, 2005.
  33. D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics,” Materials Science and Technology, vol. 8, no. 4, pp. 345–349, 1992. View at Scopus
  34. S. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Philosophical Magazine Series, vol. 7, no. 45, pp. 823–843, 1954.
  35. J. Haines, J. M. Léger, and G. Bocquillon, “Synthesis and design of superhard materials,” Annual Review of Materials Research, vol. 31, pp. 1–23, 2001. View at Publisher · View at Google Scholar
  36. V. Kanchana, “Mechanical properties of Ti3AlX (X = C, N): Ab initio study,” Europhysics Letters, vol. 87, no. 2, p. 26006, 2009.
  37. S. Mollah, “The physics of the non-oxide perovskite superconductor MgCNi3,” Journal of Physics Condensed Matter, vol. 16, no. 43, pp. R1237–R1276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. W. L. McMillan, “Transition temperature of strong-coupled superconductors,” Physical Review, vol. 167, no. 2, pp. 331–344, 1968. View at Publisher · View at Google Scholar · View at Scopus
  39. J. H. Shim, S. K. Kwon, and B. I. Min, “Electronic structures of antiperovskite superconductors MgXNi3 (X = B, C, and N),” Physical Review B, vol. 64, no. 18, Article ID 180510, 2001. View at Scopus