About this Journal Submit a Manuscript Table of Contents
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 739078, 4 pages
http://dx.doi.org/10.1155/2013/739078
Research Article

Low-Resistivity p-Type Doping in Wurtzite ZnS Using Codoping Method

Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Received 31 May 2013; Accepted 24 July 2013

Academic Editor: Haiyan Xiao

Copyright © 2013 Deng-Feng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-H. Wei, “Overcoming the doping bottleneck in semiconductors,” Computational Materials Science, vol. 30, no. 3-4, pp. 337–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Nakamura, J. Yamaguchi, S. Takagimoto, Y. Yamada, and T. Taguchi, “Luminescence properties of lithium-doped ZnS epitaxial layers grown by MOCVD,” Journal of Crystal Growth, vol. 237–239, no. 1–4, pp. 1570–1574, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Gai, J. Li, B. Yao, and J.-B. Xia, “The bipolar doping of ZnS via native defects and external dopants,” Journal of Applied Physics, vol. 105, no. 11, Article ID 113704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Yan, J. Li, S.-H. Wei, and M. M. Al-Jassim, “Possible approach to overcome the doping asymmetry in wideband gap semiconductors,” Physical Review Letters, vol. 98, no. 13, Article ID 135506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. O. K. Echendu, A. R. Weerasinghe, D. G. Diso, F. Fauzi, and I. M. Dharmadasa, “Characterization of n-Type and p-Type ZnS Thin Layers Grown by an Electrochemical Method,” Journal of Electronic Materials, vol. 42, no. 4, pp. 692–700, 2013.
  6. Y. Gai, J. Li, S.-S. Li, J.-B. Xia, Y. Yan, and S.-H. Wei, “Design of shallow acceptors in ZnO through compensated donor-acceptor complexes: a density functional calculation,” Physical Review B, vol. 80, no. 15, Article ID 153201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kumar, T.-H. Kim, S.-S. Kim, and B.-T. Lee, “Growth of epitaxial p-type ZnO thin films by codoping of Ga and N,” Applied Physics Letters, vol. 89, no. 11, Article ID 112103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Svob, C. Thiandoume, A. Lusson, M. Bouanani, Y. Marfaing, and O. Gorochov, “p-type doping with N and Li acceptors of ZnS grown by metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 76, no. 13, pp. 1695–1697, 2000. View at Scopus
  9. T. Yamamoto, S. Kishimoto, and S. Iida, “Control of valence states for ZnS by triple-codoping method,” Physica B, vol. 308–310, pp. 916–919, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Yamamoto, S. Kishimoto, and S. Iida, “Materials design for p-type ZnS with blue Ag emission by triple-codoping method,” Physica Status Solidi, vol. 229, no. 1, pp. 371–375, 2002.
  11. S.-Z. Li, J.-C. Liu, X.-D. Yang, and D.-Q. Jiang, “First-principles study of Al, N codoped p-type ZnS,” Chinese Journal of High Pressure Physics, vol. 25, no. 6, pp. 519–525, 2011. View at Scopus
  12. X. Ma, “Study of the P-type doping properties of ZnS nanocrystals,” Journal of Nanomaterials, vol. 2011, Article ID 952616, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758–1775, 1999. View at Scopus
  14. J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, vol. 33, no. 12, pp. 8800–8802, 1986. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Pack and H. J. Monkhorst, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Yan and S.-H. Wei, “Doping asymmetry in wide-bandgap semiconductors: origins and solutions,” Physica Status Solidi, vol. 245, no. 4, pp. 641–652, 2008. View at Publisher · View at Google Scholar · View at Scopus