About this Journal Submit a Manuscript Table of Contents
Autoimmune Diseases
Volume 2013 (2013), Article ID 651497, 7 pages
http://dx.doi.org/10.1155/2013/651497
Review Article

NETosis

Rheumatology Section, Universidad de Antioquia, Medellin, Colombia

Received 25 September 2012; Accepted 23 December 2012

Academic Editor: M. Cutolo

Copyright © 2013 Miguel Antonio Mesa and Gloria Vasquez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, “Neutrophils in the activation and regulation of innate and adaptive immunity,” Nature Reviews Immunology, vol. 11, no. 8, pp. 519–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Abul, et al., “Inmunidad innata,” in Inmunologia Celular Y Molecular, A. Abul, Ed., p. 566, Elsevier, 6th edition, 2008.
  3. V. Kumar and A. Sharma, “Neutrophils: cinderella of innate immune system,” International Immunopharmacology, vol. 10, no. 11, pp. 1325–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Cabrini, K. Nahmod, and J. Geffner, “New insights into the mechanisms controlling neutrophil survival,” Current Opinion in Hematology, vol. 17, no. 1, pp. 31–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Colotta, F. Re, N. Polentarutti, S. Sozzani, and A. Mantovani, “Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products,” Blood, vol. 80, no. 8, pp. 2012–2020, 1992. View at Scopus
  6. C. N. Serhan, N. Chiang, and T. E. Van Dyke, “Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators,” Nature Reviews Immunology, vol. 8, no. 5, pp. 349–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Romano and C. N. Serhan, “Lipoxin generation by permeabilized human platelets,” Biochemistry, vol. 31, no. 35, pp. 8269–8277, 1992. View at Scopus
  8. C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nature Reviews Immunology, vol. 6, no. 3, pp. 173–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Brinkmann, U. Reichard, C. Goosmann et al., “Neutrophil extracellular traps kill bacteria,” Science, vol. 303, no. 5663, pp. 1532–1535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Wartha, K. Beiter, S. Normark, and B. Henriques-Normark, “Neutrophil extracellular traps: casting the NET over pathogenesis,” Current Opinion in Microbiology, vol. 10, no. 1, pp. 52–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Cho, I. P. Fraser, K. Fukase et al., “Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity,” Blood, vol. 106, no. 7, pp. 2551–2558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Bianchi, M. J. Niemiec, U. Siler, C. F. Urban, and J. Reichenbach, “Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent,” Journal of Allergy and Clinical Immunology, vol. 127, no. 5, pp. 1243–1252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Scopus
  15. G. Kroemer, W. S. El-Deiry, P. Golstein et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1463–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kroemer, L. Galluzzi, P. Vandenabeele et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009,” Cell Death and Differentiation, vol. 16, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Galluzzi, I. Vitale, J. M. Abrams et al., “Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012,” Cell Death and Differentiation, vol. 19, no. 1, pp. 107–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. C. Rubinsztein, G. Mariño, and G. Kroemer, “Autophagy and aging,” Cell, vol. 146, no. 5, pp. 682–695, 2011.
  19. A. Eisenberg-Lerner, S. Bialik, H. U. Simon, and A. Kimchi, “Life and death partners: apoptosis, autophagy and the cross-talk between them,” Cell Death and Differentiation, vol. 16, no. 7, pp. 966–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. B. Wardini, A. B. Guimarães-Costa, M. T. C. Nascimento et al., “Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus,” Journal of General Virology, vol. 91, no. 1, pp. 259–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Ermert, C. F. Urban, B. Laube, C. Goosmann, A. Zychlinsky, and V. Brinkmann, “Mouse neutrophil extracellular traps in microbial infections,” Journal of Innate Immunity, vol. 1, no. 3, pp. 181–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. R. Clark, A. C. Ma, S. A. Tavener et al., “Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood,” Nature Medicine, vol. 13, no. 4, pp. 463–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Lippolis, T. A. Reinhardt, J. P. Goff, and R. L. Horst, “Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk,” Veterinary Immunology and Immunopathology, vol. 113, no. 1-2, pp. 248–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. F. Urban, D. Ermert, M. Schmid et al., “Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans,” PLoS Pathogens, vol. 5, no. 10, article e1000639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Bianchi, A. Hakkim, V. Brinkmann et al., “Restoration of NET formation by gene therapy in CGD controls aspergillosis,” Blood, vol. 114, no. 13, pp. 2619–2622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Bruns, O. Kniemeyer, M. Hasenberg et al., “Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA,” PLoS Pathogens, vol. 6, no. 4, article e1000873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. B. Guimarães-Costa, M. T. C. Nascimento, G. S. Froment et al., “Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6748–6753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Medina, “Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host,” Journal of Innate Immunity, vol. 1, no. 3, pp. 176–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Remijsen, T. W. Kuijpers, E. Wirawan, S. Lippens, P. Vandenabeele, and T. Vanden Berghe, “Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality,” Cell Death and Differentiation, vol. 18, no. 4, pp. 581–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. W. D. Krautgartner, M. Klappacher, M. Hannig et al., “Fibrin mimics neutrophil extracellular traps in SEM,” Ultrastructural Pathology, vol. 34, no. 4, pp. 226–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Vitkov, M. Klappacher, M. Hannig, and W. D. Krautgartner, “Neutrophil fate in gingival crevicular fluid,” Ultrastructural Pathology, vol. 34, no. 1, pp. 25–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Gupta, P. Hasler, W. Holzgreve, and S. Hahn, “Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia?” Seminars in Immunopathology, vol. 29, no. 2, pp. 163–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Yousefi, J. A. Gold, N. Andina et al., “Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense,” Nature Medicine, vol. 14, no. 9, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Marcos, Z. Zhou, A. O. Yildirim, et al., “CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation,” Nature Medicine, vol. 16, no. 9, pp. 1018–1023, 2010. View at Publisher · View at Google Scholar
  35. V. Ramos-Kichik, R. Mondragón-Flores, M. Mondragón-Castelán et al., “Neutrophil extracellular traps are induced by Mycobacterium tuberculosis,” Tuberculosis, vol. 89, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. V. S. Baker, G. E. Imade, N. B. Molta et al., “Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age,” Malaria Journal, vol. 7, article 41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Saitoh, J. Komano, Y. Saitoh, et al., “Neutrophil extracellular traps mediate a host defense response to human,” Cell Host & Microbe, vol. 12, no. 1, pp. 109–116, 2012. View at Publisher · View at Google Scholar
  38. M. F. Denny, S. Yalavarthi, W. Zhao, et al., “A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs,” Journal of Immunology, vol. 184, no. 6, pp. 3284–3297, 2010. View at Publisher · View at Google Scholar
  39. A. Hakkim, B. G. Fürnrohr, K. Amann et al., “Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9813–9818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Obermoser and V. Pascual, “The interferon-α signature of systemic lupus erythematosus,” Lupus, vol. 19, no. 9, pp. 1012–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Villanueva, S. Yalavarthi, C. C. Berthier et al., “Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus,” Journal of Immunology, vol. 187, no. 1, pp. 538–552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kessenbrock, M. Krumbholz, U. Schönermarck et al., “Netting neutrophils in autoimmune small-vessel vasculitis,” Nature Medicine, vol. 15, no. 6, pp. 623–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Schorn, C. Janko, M. Latzko, R. Chaurio, G. Schett, and M. Herrmann, “Monosodium urate crystals induce extracellular DNA traps in neutrophils,” Frontiers in Immunology, vol. 3, article 277, 2012. View at Publisher · View at Google Scholar
  44. H. U. Simon, “Neutrophil apoptosis pathways and their modifications in inflammation,” Immunological Reviews, vol. 193, pp. 101–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. C. C. Mihalache, S. Yousefi, S. Conus, P. M. Villiger, E. M. Schneider, and H. U. Simon, “Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events,” Journal of Immunology, vol. 186, no. 11, pp. 6532–6542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Brinkmann, B. Laube, U. Abu Abed, C. Goosmann, and A. Zychlinsky, “Neutrophil extracellular traps: how to generate and visualize them,” Journal of Visualized Experiments, no. 36, article 1724, 2010. View at Publisher · View at Google Scholar
  47. W. L. Lee and S. Grinstein, “Immunology. The tangled webs that neutrophils weave,” Science, vol. 303, no. 5663, pp. 1477–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Brinkmann and A. Zychlinsky, “Beneficial suicide: why neutrophils die to make NETs,” Nature Reviews Microbiology, vol. 5, no. 8, pp. 577–582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. T. A. Fuchs, U. Abed, C. Goosmann et al., “Novel cell death program leads to neutrophil extracellular traps,” Journal of Cell Biology, vol. 176, no. 2, pp. 231–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. von Köckritz-Blickwede, O. Goldmann, P. Thulin et al., “Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation,” Blood, vol. 111, no. 6, pp. 3070–3080, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Wartha and B. Henriques-Normark, “ETosis: a novel cell death pathway,” Science Signaling, vol. 1, no. 21, article pe25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. B. E. Steinberg and S. Grinstein, “Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death,” Science's STKE, vol. 2007, no. 379, article pe11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Amulic and G. Hayes, “Neutrophil extracellular traps,” Current Biology, vol. 21, no. 9, pp. R297–R298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. N. K. Tonks, “Redox redux: revisiting PTPs and the control of cell signaling,” Cell, vol. 121, no. 5, pp. 667–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Fadeel, A. Åhlin, J. I. Henter, S. Orrenius, and M. B. Hampton, “Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species,” Blood, vol. 92, no. 12, pp. 4808–4818, 1998. View at Scopus
  56. B. M. Babior, “NADPH oxidase,” Current Opinion in Immunology, vol. 16, no. 1, pp. 42–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Marcos, Z. Zhou, A. O. Yildirim, et al., “CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation,” Nature Medicine, vol. 17, no. 7, pp. 899–899, 2011. View at Publisher · View at Google Scholar
  58. V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky, “Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps,” Journal of Cell Biology, vol. 191, no. 3, pp. 677–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. K. D. Metzler, T. A. Fuchs, W. M. Nauseef et al., “Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity,” Blood, vol. 117, no. 3, pp. 953–959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Wang, M. Li, S. Stadler et al., “Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation,” Journal of Cell Biology, vol. 184, no. 2, pp. 205–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. F. G. Mastronardi, D. D. Wood, J. Mei et al., “Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation,” Journal of Neuroscience, vol. 26, no. 44, pp. 11387–11396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang, “PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1853–1862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. G. Hirsch, “Bactericidal action of histone,” The Journal of Experimental Medicine, vol. 108, no. 6, pp. 925–944, 1958. View at Scopus
  64. K. Beiter, F. Wartha, B. Albiger, S. Normark, A. Zychlinsky, and B. Henriques-Normark, “An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps,” Current Biology, vol. 16, no. 4, pp. 401–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. T. Buchanan, A. J. Simpson, R. K. Aziz et al., “DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps,” Current Biology, vol. 16, no. 4, pp. 396–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Wartha, K. Beiter, B. Albiger et al., “Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps,” Cellular Microbiology, vol. 9, no. 5, pp. 1162–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. A. C. Ma and P. Kubes, “Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis,” Journal of Thrombosis and Haemostasis, vol. 6, no. 3, pp. 415–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. T. Ammollo, F. Semeraro, J. Xu, N. L. Esmon, and C. T. Esmon, “Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation,” Journal of Thrombosis and Haemostasis, vol. 9, no. 9, pp. 1795–1803, 2011. View at Publisher · View at Google Scholar
  69. J. Xu, X. Zhang, R. Pelayo et al., “Extracellular histones are major mediators of death in sepsis,” Nature Medicine, vol. 15, no. 11, pp. 1318–1321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Chaput and A. Zychlinsky, “Sepsis: the dark side of histones,” Nature Medicine, vol. 15, no. 11, pp. 1245–1246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. V. Papayannopoulos and A. Zychlinsky, “NETs: a new strategy for using old weapons,” Trends in Immunology, vol. 30, no. 11, pp. 513–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. A. S. Alghamdi and D. N. Foster, “Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps,” Biology of Reproduction, vol. 73, no. 6, pp. 1174–1181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. K. Gupta, P. Hasler, W. Holzgreve, S. Gebhardt, and S. Hahn, “Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia,” Human Immunology, vol. 66, no. 11, pp. 1146–1154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. X. Bosch, “Systemic lupus erythematosus and the neutrophil,” The New England Journal of Medicine, vol. 365, pp. 758–760, 2011. View at Publisher · View at Google Scholar
  75. T. Lögters, S. Margraf, J. Altrichter et al., “The clinical value of neutrophil extracellular traps,” Medical Microbiology and Immunology, vol. 198, pp. 211–219, 2009. View at Publisher · View at Google Scholar
  76. G. Melino, “The Sirens' song,” Nature, vol. 412, no. 6842, p. 23, 2001. View at Publisher · View at Google Scholar · View at Scopus