Advances in Environmental Chemistry The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Two-Phase Dechlorination/Detoxification of Lindane (Hexachlorocyclohexane) Mon, 29 Sep 2014 09:27:32 +0000 Dechlorination of lindane was carried out in a two-phase reaction. In first phase Devarda’s alloy and sodium borohydride were used in aqueous/ethanol reaction media. The reaction duration and temperature were optimized. In first phase higher dechlorination (78%) was achieved at 80°C with 40-minute reaction time and the products were chlorobenzene, dichlorobenzene, and chlorocyclohexane. In second phase, Ca(OH)2 and sulfur were added in reaction media. The reactions conditions like temperature and reaction time were optimized. After 30 minutes, dechlorination was enhanced from 78% to 94% and the final products were benzene, phenol, catechol, benzenethiol, cyclohexane, cyclohexanol, and cyclohexanethiol. The results suggested that dechlorination of lindane in first and second phase was carried out through hydrodechlorination and substitution reactions, respectively. The developed method was applied for lindane containing real wastewater and higher dechlorination (91%) was achieved under optimized reaction conditions. Abdul Ghaffar, Masaaki Tabata, and Azhar Mashiatullah Copyright © 2014 Abdul Ghaffar et al. All rights reserved. Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis Mon, 25 Aug 2014 05:45:54 +0000 Establishing a treatment process for practical and economic disposal of car wash wastewater has become an urgent environmental concern. Photo-Fenton’s process as one of the advanced oxidation processes is a potentially useful oxidation process in treating such wastewater. Lab-scale experiments with UV source, coupled with Fenton’s reagent, showed that hydrocarbon oil is degradable through such a process. The feasibility of photo-Fenton’s process to treat wastewater from a car wash is investigated in the present study. A factorial design based on the response surface methodology was applied to optimize the photo-Fenton oxidation process conditions using chemical oxygen demand (COD) reduction as the target parameter to optimize. The reagent (Fe2+ and H2O2 concentration) and pH are used as the controlling factors to be optimized. Maximal COD reduction (91.7%) was achieved when wastewater samples were treated at pH 3.5 in the presence of hydrogen peroxide and iron in amounts of 403.9 and 48.4 mg/L, respectively. Maha A. Tony and Zeinab Bedri Copyright © 2014 Maha A. Tony and Zeinab Bedri. All rights reserved. Defluoridation with Locally Produced Thai Bone Char Tue, 19 Aug 2014 00:00:00 +0000 The fluoride sorption ability of a locally available bone char is quantified. Both a synthetic solution and natural groundwater samples from several sites are studied and compared to Indian bone char, which is widely accepted and used successfully in India and elsewhere. The Freundlich and Langmuir sorption isotherms were used to quantify sorption properties. Results show that the Thai bone char is as effective as the Indian bone char for removing fluoride from contaminated water, despite the more rigid physical and social constraints found in rural Thailand. Sorption studies with fluoride-contaminated natural groundwater samples also show that chlorides, nitrates, and sulfates had little effect on the removal of fluoride by the homemade bone char. Yothin Mutchimadilok, Sunisa Smittakorn, Surat Mongkolnchai-arunya, and Deanna Durnford Copyright © 2014 Yothin Mutchimadilok et al. All rights reserved. Oil and Grease Removal from Industrial Wastewater Using New Utility Approach Tue, 08 Jul 2014 00:00:00 +0000 The present study is an attempt to investigate oil and grease pollution that may pollute fresh water and influence aquatic environment. Then removal of oil and grease from manufacturing wastewater befall essential but common techniques not enough. Enzyme and adsorption units representing major developed new laboratory were selected to assess the water quality and humiliation prospective of oil and grease from wastewater. Several components and environmental variables that were dissolved oxygen, bacteriology measure, flow rate and adsorption material amount studied to assess the removal performance of oil and grease. The results elucidated significant variations among different tests which influenced microbial necessary role of oxidation declining develop biological treatment process reached to 72%. The study stressed out natural material (zeolite) that enhanced organic reduction under optimal conditions. These conditions were closer spacing and high length of adsorbing unit that led to increase oil and grease contact period with adsorbent and added to increase performance removal reached to 99%. H. S. Abd El-Gawad Copyright © 2014 H. S. Abd El-Gawad. All rights reserved. Bioremediation of Waste Water Containing Hazardous Cadmium Ion with Ion Imprinted Interpenetrating Polymer Networks Wed, 16 Apr 2014 09:33:04 +0000 A novel Cd(II) ion imprinted interpenetrating polymer network (Cd(II)IIP) was prepared by free radical polymerization using alginic acid and NNMBA-crosslinked polyacrylamide in presence of initiator potassium persulphate. Cd(II)IIP showed higher capacity and selectivity than the nonimprinted polymer (NIP). The sorption capacities of Cd(II)IIP and NIP for Cd(II) ions were 0.886 and 0.663 , respectively. Kinetics studies showed that the sorption process closely agreed with a pseudosecond-order model. The thermodynamic data suggest that the sorption is a spontaneous endothermic process. Equilibrium experiments showed very good fit with the Langmuir isotherm equation for the monolayer sorption process. Cd(II)IIP exhibited good reusability, and the sorption capacity of Cd(II)IIP was stable within the first 4 cycles without obvious decrease. Also Cd(II)IIP showed almost 100% removal efficiency for Cd(II) ions in real environmental water samples, indicating that Cd(II)IIP could have wide application prospects in Cd(II) ion removal. Girija Parameswaran and Beena Mathew Copyright © 2014 Girija Parameswaran and Beena Mathew. All rights reserved.