About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 130941, 11 pages
http://dx.doi.org/10.1155/2012/130941
Research Article

Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

1Department of Ecology and Natural Resources, Jalal-Abad State University, 57 Lenin Street, 715600 Jalal-Abad, Kyrgyzstan
2Cropping Systems Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3810 4th Street, Lubbock, TX 79415, USA
3Department of Plant and Soil Science, Texas Tech University, 15th and Detroit, Room 201, Mail Stop 2122, Lubbock, TX 79409-2122, USA
4Department of Soil Science, Agrochemistry and Farming, Kyrgyz National Agrarian University, 68 Mederov Street, 720005 Bishkek, Kyrgyzstan

Received 24 May 2012; Revised 17 July 2012; Accepted 30 July 2012

Academic Editor: D. L. Jones

Copyright © 2012 Zulfiia Sakbaeva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Dick and M. A. Tabatabai, “Potential uses of soil enzymes,” in Soil Microbial Ecology: Applications in Agricultural and Environmental Management, F. B. Metting, Ed., pp. 95–127, Marcel Dekker, New York, NY, USA, 1992.
  2. E. Kandeler, C. Kampichler, and O. Horak, “Influence of heavy metals on the functional diversity of soil microbial communities,” Biology and Fertility of Soils, vol. 23, no. 3, pp. 299–306, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Trasar-Cepeda, M. C. Leirós, and F. Gil-Sotres, “Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): specific parameters,” Soil Biology and Biochemistry, vol. 32, no. 6, pp. 747–755, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Acosta Martínez, S. E. Dowd, C. Bell et al., “Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil,” Diversity, vol. 2, pp. 910–931, 2010. View at Publisher · View at Google Scholar
  5. E. Kandeler, D. Tscherko, and H. Spiegel, “Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management,” Biology and Fertility of Soils, vol. 28, no. 4, pp. 343–351, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Acosta-Martínez and M. A. Tabatabai, “Tillage and residue management effects on arylamidase activity in soils,” Biology and Fertility of Soils, vol. 34, no. 1, pp. 21–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Bandick and R. P. Dick, “Field management effects on soil enzyme activities,” Soil Biology and Biochemistry, vol. 31, no. 11, pp. 1471–1479, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Klose, J. M. Moore, and M. A. Tabatabai, “Arylsulfatase activity of microbial biomass in soils as affected by cropping systems,” Biology and Fertility of Soils, vol. 29, no. 1, pp. 46–54, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. E. L. Ndiaye, J. M. Sandeno, D. McGrath, and R. P. Dick, “Integrative biological indicators for detecting change in soil quality,” American Journal of Alternative Agriculture, vol. 15, no. 1, pp. 26–36, 2000. View at Scopus
  10. M. L. Staben, D. F. Bezdicek, J. L. Smith, and M. F. Fauci, “Assessment of soil quality in conservation reserve program and wheat-fallow soils,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 124–130, 1997. View at Scopus
  11. V. L. Gewin, A. C. Kennedy, R. Veseth, and B. C. Miller, “Soil quality changes in eastern Washington with Conservation Reserve Program (CRP) take-out,” Journal of Soil and Water Conservation, vol. 54, no. 1, pp. 432–438, 1999. View at Scopus
  12. V. Acosta-Martínez, T. M. Zobeck, T. E. Gill, and A. C. Kennedy, “Enzyme activities and microbial community structure in semiarid agricultural soils,” Biology and Fertility of Soils, vol. 38, no. 4, pp. 216–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Food Agriculture Organization of the United Nations, “Kyrgyzstan profile,” http://www.fao.org/countries/55528/en/kgz/.
  14. G. E. Hemery, “Walnut seed-collecting expedition to Kyrgyzstan in Central Asia,” Quarterly Journal of Forestry, vol. 92, pp. 153–157, 1998.
  15. M. Kononova, “Organic matter of soils, its nature, properties and methods of study,” Academy Nauk of SSSR, Moskov, pp. 145–153, 1963 (Russian).
  16. G. Buherer, Microflora of Main Soils of Kyrgyzstan, Nauka, Moscow, Russia, 1966.
  17. A. Mamytov, G. I. Roichenko, and G. Buherer, Group Composition of Humus of Main Soil Types of Kyrgyz Republic, Ilim, Frunze, Kyrgyzstan, 1971.
  18. G. I. Roichenko, The Soils of South Kyrgyzstan, Academy Nauk of Kyrgyz SSR, Frunze, Kyrgyzstan, 1960.
  19. T. A. Kettler, J. W. Doran, and T. L. Gilbert, “Simplified method for soil particle-size determination to accompany soil-quality analyses,” Soil Science Society of America Journal, vol. 65, no. 3, pp. 849–852, 2001. View at Scopus
  20. B. K. Gugino, O. J. Idowu, R. R. Schindelbeck et al., “Cornell soil health assessment training manual,” Edition 2.0, Cornell University, Geneva, NY, USA, 2009.
  21. M. A. Tabatabai, “Soil enzymes,” in Methods of Soil Analysis: Microbiological and Biochemical Properties, R. W. Weaver, J. S. Angle, and P. S. Bottomley, Eds., vol. 5 of SSSA Book Series, Part 2, pp. 775–833, SSSA, Madison, Wis, USA, 1994.
  22. J. A. Parham and S. P. Deng, “Detection, quantification and characterization of β-glucosaminidase activity in soil,” Soil Biology and Biochemistry, vol. 32, no. 8-9, pp. 1183–1190, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Acosta-Martínez, D. Acosta-Mercado, D. Sotomayor-Ramírez, and L. Cruz-Rodríguez, “Microbial communities and enzymatic activities under different management in semiarid soils,” Applied Soil Ecology, vol. 38, no. 3, pp. 249–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. M. Zibilske and L. A. Materon, “Biochemical properties of decomposing cotton and corn stem and root residues,” Soil Science Society of America Journal, vol. 69, no. 2, pp. 378–386, 2005. View at Scopus
  25. M. F. E. Lavahun, R. G. Joergensen, and B. Meyer, “Activity and biomass of soil microorganisms at different depths,” Biology and Fertility of Soils, vol. 23, no. 1, pp. 38–42, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Kizilkaya and O. DengIz, “Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity,” Zemdirbyste, vol. 97, no. 2, pp. 15–24, 2010. View at Scopus
  27. J. Kazimierz, “The enzyme activity of the forest soils of Southern Poland as a measure of soil quality,” Electronic Journal of Polish Agricultural Universities, vol. 14, pp. 1–13, 2011.
  28. J. M. Melillo, J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer, “Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter,” Plant and Soil, vol. 115, no. 2, pp. 189–198, 1989. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Emmerling, M. Schloter, A. Hartmann, and E. Kandeler, “Functional diversity of soil organisms—a review of recent research activities in Germany,” Journal of Plant Nutrition and Soil Science, vol. 165, pp. 408–420, 2002.
  30. V. Acosta-Martínez, D. Acosta-Mercado, D. Sotomayor-Ramírez, and L. Cruz-Rodríguez, “Microbial communities and enzymatic activities under different management in semiarid soils,” Applied Soil Ecology, vol. 38, no. 3, pp. 249–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Eivazi and M. A. Tabatabai, “Phosphatases in soils,” Soil Biology and Biochemistry, vol. 9, no. 3, pp. 167–172, 1977. View at Scopus